Your browser doesn't support javascript.
loading
Features of extreme PM 2.5 pollution and its influencing factors: evidence from China.
Deng, Lu; Liu, Xinzhu.
Afiliación
  • Deng L; School of Statistics and Mathematics, Central University of Finance and Economics, Beijing, 100081, China.
  • Liu X; School of Statistics and Mathematics, Central University of Finance and Economics, Beijing, 100081, China. liuxz@email.cufe.edu.cn.
Environ Monit Assess ; 196(10): 892, 2024 Sep 04.
Article en En | MEDLINE | ID: mdl-39230774
ABSTRACT
Extreme PM 2.5 pollution has become a significant environmental problem in China in recent years, which is hazardous to human health and daily life. Noticing the importance of investigating the causes of extreme PM 2.5 pollution, this paper classifies cities across China into eight categories (four groups plus two scenarios) based on the generalized extreme value (GEV) distribution using hourly station-level PM 2.5 concentration data, and a series of multi-choice models are employed to assess the probabilities that cities fall into different categories. Various factors such as precursor pollutants and socio-economic factors are considered after controlling for meteorological conditions in each model. It turns out that SO 2 concentration, NO 2 concentration, and population density are the top three factors contributing most to the log ratios. Moreover, in both left- and right-skewed cases, the influence of a one-unit increase of SO 2 concentration on the relative probability of cities falling into different groups shows an increasing trend, while those of NO 2 concentration show a decreasing trend. At the same time, the higher the extreme pollution level, the bigger the effect of SO 2 and NO 2 concentrations on the probability of cities falling into normalized scenarios. The multivariate logit model is used for prediction and policy simulations. In summary, by analyzing the influences of various factors and the heterogeneity of their influence patterns, this paper provides valuable insights in formulating effective emission reduction policies.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Monitoreo del Ambiente / Ciudades / Contaminantes Atmosféricos / Contaminación del Aire / Material Particulado País/Región como asunto: Asia Idioma: En Revista: Environ Monit Assess Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Monitoreo del Ambiente / Ciudades / Contaminantes Atmosféricos / Contaminación del Aire / Material Particulado País/Región como asunto: Asia Idioma: En Revista: Environ Monit Assess Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos