Your browser doesn't support javascript.
loading
Formulation and Evaluation of Butenafine Hydrochloride-Incorporated Solid Lipid Nanoparticles as Novel Excipients for the Treatment of Superficial Fungal Infections.
Baviskar, Anagha; Kashid, Vivekanand; Ahirrao, Sapana; Bhambere, Deepak; Akul, Manoj.
Afiliación
  • Baviskar A; Dr. Kolpe Institute of Pharmacy, Department of Pharmaceutics, Maharashtra, India.
  • Kashid V; Dr. Kolpe Institute of Pharmacy, Department of Pharmaceutics, Maharashtra, India.
  • Ahirrao S; MET Bhujbal Knowledge City, Institute of Pharmacy, Maharashtra, India.
  • Bhambere D; MET Bhujbal Knowledge City, Institute of Pharmacy, Maharashtra, India.
  • Akul M; Glenmark Pharmaceuticals Limited, Maharashtra, India.
Turk J Pharm Sci ; 21(4): 313-326, 2024 Sep 02.
Article en En | MEDLINE | ID: mdl-39224083
ABSTRACT

Objectives:

The objective of the present study was to develop natural excipient-based solid lipid nanoparticles (SLN) of butenafine hydrochloride (BUTE) using a modified solvent emulsification technique and to evaluate the competence of aloe vera nanolipidgel in enhancing the penetration of BUTE. Materials and

Methods:

BUTE-SLNs were prepared using a 23 factorial design to correlate the effect of formulation components on the BUTE-SLN. Particle size, polydispersity index (PDI), zeta potential, entrapment performance, and drug loading were assessed in the formed SLNs. The fabricated BUTE-SLN was evaluated for transmission electron microscopy, fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction study studies and revealed the encapsulation of BUTE in lipid in the amorphous state. BUTE-SLN-based aloe vera gel was formulated and evaluated compared with the marketed product with respect to primary skin irritation, hydration, skin permeation, and antifungal activity.

Results:

The BUTE-SLN aloe vera gel, optimized for its formulation, features excellent slip properties and controlled drug release. DSC and XRD studies confirm its amorphous nature with effective drug entrapment. The gel provides enhanced skin deposition, improved antifungal activity, and reduced irritation. This makes it a cost-effective and innovative alternative to traditional dosage forms. BUTE-SLN promisingly showed no irritation, higher hydrating potential, slow and sustained release, and enhanced antifungal activity. With an aim to target deeper skin strata, minimize the side effects of drugs and symptomatic impact of fungal infection, and shorten the duration of therapy, BUTE-SLN was successfully prepared. The mean particle size and PDI were 261.25 ± 2.38 nm and 0.268 ± 0.01, respectively.

Conclusion:

BUTE-SLN gel offers improved topical delivery of BUTE with significantly higher compatibility and antifungal activity than the marketed formulation.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Turk J Pharm Sci Año: 2024 Tipo del documento: Article País de afiliación: India Pais de publicación: Turquía

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Turk J Pharm Sci Año: 2024 Tipo del documento: Article País de afiliación: India Pais de publicación: Turquía