Your browser doesn't support javascript.
loading
Single-molecule force spectroscopy of toehold-mediated strand displacement.
Walbrun, Andreas; Wang, Tianhe; Matthies, Michael; Sulc, Petr; Simmel, Friedrich C; Rief, Matthias.
Afiliación
  • Walbrun A; Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Center for Functional Protein Assemblies (CPA), Garching, Germany.
  • Wang T; Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Garching, Germany.
  • Matthies M; Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Garching, Germany.
  • Sulc P; Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Garching, Germany.
  • Simmel FC; School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA.
  • Rief M; Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Garching, Germany. simmel@tum.de.
Nat Commun ; 15(1): 7564, 2024 Aug 31.
Article en En | MEDLINE | ID: mdl-39217165
ABSTRACT
Toehold-mediated strand displacement (TMSD) is extensively utilized in dynamic DNA nanotechnology and for a wide range of DNA or RNA-based reaction circuits. Investigation of TMSD kinetics typically relies on bulk fluorescence measurements providing effective, bulk-averaged reaction rates. Information on individual molecules or even base pairs is scarce. In this work, we explore the dynamics of strand displacement processes at the single-molecule level using single-molecule force spectroscopy with a microfluidics-enhanced optical trap supported by state-of-the-art coarse-grained simulations. By applying force, we can trigger and observe TMSD in real-time with microsecond and nanometer resolution. We find TMSD proceeds very rapidly under load with single step times of 1 µs. Tuning invasion efficiency by introducing mismatches allows studying thousands of forward/backward invasion events on a single molecule and analyze the kinetics of the invasion process. Extrapolation to zero force reveals single step times for DNA invading DNA four times faster than for RNA invading RNA. We also study the kinetics of DNA invading RNA, a process that in the absence of force would rarely occur. Our results reveal the importance of sequence effects for the TMSD process and have relevance for a wide range of applications in nucleic acid nanotechnology and synthetic biology.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: ADN / ARN / Nanotecnología Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: ADN / ARN / Nanotecnología Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2024 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Reino Unido