Your browser doesn't support javascript.
loading
A mixed animal and plant protein source replacing fishmeal affects bile acid metabolism and apoptosis in largemouth bass (Micropterus salmoides).
Chen, Liutong; Qi, Yu; Shi, Menglin; Qu, Kangyuan; Liu, Yucheng; Tan, Beiping; Xie, Shiwei.
Afiliación
  • Chen L; College of Fisheries, Guangdong Ocean University, Zhanjiang, China.
  • Qi Y; College of Fisheries, Guangdong Ocean University, Zhanjiang, China.
  • Shi M; College of Fisheries, Guangdong Ocean University, Zhanjiang, China.
  • Qu K; College of Fisheries, Guangdong Ocean University, Zhanjiang, China.
  • Liu Y; College of Fisheries, Guangdong Ocean University, Zhanjiang, China.
  • Tan B; College of Fisheries, Guangdong Ocean University, Zhanjiang, China.
  • Xie S; College of Fisheries, Guangdong Ocean University, Zhanjiang, China.
J Anim Sci ; 2024 Aug 30.
Article en En | MEDLINE | ID: mdl-39212095
ABSTRACT
Chicken meal, shrimp meal, blood meal, and soybean protein concentrate (SPC) are common alternatives to fishmeal. This study used them to prepare three diets with different levels of fishmeal (FM48, FM40, FM32) for largemouth bass (Micropterus salmoides). The results found no significant difference in the growth performance of largemouth bass fed different diets. Mixed protein increased the total cholesterol (T-CHO) content in plasma, and reduced the total superoxide dismutase (T-SOD) activity in plasma and liver. Targeted metabolomics analysis found that the low fishmeal diets affected the cholesterol and bile acid metabolism of largemouth bass. Mixed protein inhibited cyp7a1 and enhanced hmgcr and pparγ mRNA levels, as well as enhanced the expression levels of FXR in the liver. The fish fed FM32 diet showed inhibited fxr, rxrα and cyp7a1 mRNA levels in the intestine. The results of TUNEL fluorescence staining showed that mixed protein induced apoptosis in largemouth bass. The caspase 3 and caspase 9 mRNA levels in the fish fed FM40 and FM32 diet significantly increased, as well as the expression levels of CASPASE 3. The experiment also found that it could induce oxidative stress and endoplasmic reticulum stress. In conclusion, replacement of fishmeal with mixed animal and plant protein diets did not affect the growth performance, but the health and bile acid metabolism of largemouth bass was affected when the fishmeal level was reduced to 32 %.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Anim Sci Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Anim Sci Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos