Your browser doesn't support javascript.
loading
Unlocking comprehensive molecular design across all scenarios with large language model and unordered chemical language.
Yue, Jie; Peng, Bingxin; Chen, Yu; Jin, Jieyu; Zhao, Xinda; Shen, Chao; Ji, Xiangyang; Hsieh, Chang-Yu; Song, Jianfei; Hou, Tingjun; Deng, Yafeng; Wang, Jike.
Afiliación
  • Yue J; College of Information Engineering, Hebei University of Architecture Zhangjiakou 075132 Hebei China.
  • Peng B; College of Information Engineering, Hebei University of Architecture Zhangjiakou 075132 Hebei China.
  • Chen Y; CarbonSilicon AI Technology Co., Ltd Hangzhou 310018 Zhejiang China songjianfei@carbonsilicon.ai dengyafeng@carbonsilicon.ai.
  • Jin J; CarbonSilicon AI Technology Co., Ltd Hangzhou 310018 Zhejiang China songjianfei@carbonsilicon.ai dengyafeng@carbonsilicon.ai.
  • Zhao X; College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China tingjunhou@zju.edu.cn jikewang@zju.edu.cn.
  • Shen C; CarbonSilicon AI Technology Co., Ltd Hangzhou 310018 Zhejiang China songjianfei@carbonsilicon.ai dengyafeng@carbonsilicon.ai.
  • Ji X; College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China tingjunhou@zju.edu.cn jikewang@zju.edu.cn.
  • Hsieh CY; CarbonSilicon AI Technology Co., Ltd Hangzhou 310018 Zhejiang China songjianfei@carbonsilicon.ai dengyafeng@carbonsilicon.ai.
  • Song J; Department of Automation, Tsinghua University Beijing 100084 China.
  • Hou T; College of Pharmaceutical Sciences, Zhejiang University Hangzhou 310058 Zhejiang China tingjunhou@zju.edu.cn jikewang@zju.edu.cn.
  • Deng Y; CarbonSilicon AI Technology Co., Ltd Hangzhou 310018 Zhejiang China songjianfei@carbonsilicon.ai dengyafeng@carbonsilicon.ai.
  • Wang J; CarbonSilicon AI Technology Co., Ltd Hangzhou 310018 Zhejiang China songjianfei@carbonsilicon.ai dengyafeng@carbonsilicon.ai.
Chem Sci ; 15(34): 13727-13740, 2024 Aug 28.
Article en En | MEDLINE | ID: mdl-39211505
ABSTRACT
Molecular generation stands at the forefront of AI-driven technologies, playing a crucial role in accelerating the development of small molecule drugs. The intricate nature of practical drug discovery necessitates the development of a versatile molecular generation framework that can tackle diverse drug design challenges. However, existing methodologies often struggle to encompass all aspects of small molecule drug design, particularly those rooted in language models, especially in tasks like linker design, due to the autoregressive nature of large language model-based approaches. To empower a language model for a wider range of molecular design tasks, we introduce an unordered simplified molecular-input line-entry system based on fragments (FU-SMILES). Building upon this foundation, we propose FragGPT, a universal fragment-based molecular generation model. Initially pretrained on extensive molecular datasets, FragGPT utilizes FU-SMILES to facilitate efficient generation across various practical applications, such as de novo molecule design, linker design, R-group exploration, scaffold hopping, and side chain optimization. Furthermore, we integrate conditional generation and reinforcement learning (RL) methodologies to ensure that the generated molecules possess multiple desired biological and physicochemical properties. Experimental results across diverse scenarios validate FragGPT's superiority in generating molecules with enhanced properties and novel structures, outperforming existing state-of-the-art models. Moreover, its robust drug design capability is further corroborated through real-world drug design cases.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Chem Sci Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Chem Sci Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido