Your browser doesn't support javascript.
loading
Missing-Linker Defect Functionalized Metal-Organic Frameworks Accelerating Zinc Ion Conduction for Ultrastable All-Solid-State Zinc Metal Batteries.
Hui, Xiaobin; Zhan, Zhen; Zhang, Zeyu; Yu, Jingya; Jiang, Pengyan; Dang, Zhengzheng; Wang, Jian; Cai, Songhua; Wang, Yanming; Xu, Zheng-Long.
Afiliación
  • Hui X; Research Institute for Advanced Manufacturing, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR 999077, China.
  • Zhan Z; State Key Laboratory of Ultra-precision Machining Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR 999077, China.
  • Zhang Z; Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR 999077, China.
  • Yu J; University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China.
  • Jiang P; Research Institute for Advanced Manufacturing, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR 999077, China.
  • Dang Z; Research Institute for Advanced Manufacturing, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR 999077, China.
  • Wang J; University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China.
  • Cai S; School of Energy and Environment, City University of Hong Kong, Hong Kong,SAR China.
  • Wang Y; Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, SAR 999077, China.
  • Xu ZL; University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China.
ACS Nano ; 18(36): 25237-25248, 2024 Sep 10.
Article en En | MEDLINE | ID: mdl-39206674
ABSTRACT
Solid-state polymer electrolytes (SPEs) are promising for high-performance zinc metal batteries (ZMBs), but they encounter critical challenges of low ionic conductivity, limited Zn2+ transference number (tZn2+), and an unstable electrolyte-electrode interface. Here, we present an effective approach involving a missing-linker metallic organic framework (MOF)-catalyzed poly(ethylene glycol) diacrylate (PEGDA)/polyacrylamide (PAM) copolymer SPE for single Zn2+ conduction and seamless electrolyte-electrode contact. The single-Zn2+ conduction is facilitated by the anchoring of the OTF- anions onto the unsaturated metal sites of missing-linker MOF, while the PEGDA and PAM chains in competitive coordination with Zn2+ ions promote rapid Zn ion transport. Our all-solid-state electrolyte simultaneously achieves a superior ionic conductivity of 1.52 mS cm-1 and a high tZn2+ of 0.83 at room temperature, alongside uniform Zn metal deposition (1000 cycles in symmetric cells) and high Zn plating/striping efficiencies (>99% after 600 cycles in asymmetric cells). Applications of our SPE in Zn//VO2 full cells are further demonstrated with a long lifespan of 2000 cycles and an extremely low-capacity degradation rate of 0.012% per cycle. This work provides an effective strategy for using a missing-linker MOF to catalyze competitively coordinating copolymers for accelerating Zn2+ ion conduction, assisting the future design of all-solid-state ZMBs.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Nano Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos