Your browser doesn't support javascript.
loading
Predicting the Healing of Lower Extremity Fractures Using Wearable Ground Reaction Force Sensors and Machine Learning.
North, Kylee; Simpson, Grange; Geiger, Walt; Cizik, Amy; Rothberg, David; Hitchcock, Robert.
Afiliación
  • North K; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
  • Simpson G; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
  • Geiger W; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
  • Cizik A; Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA.
  • Rothberg D; Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA.
  • Hitchcock R; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
Sensors (Basel) ; 24(16)2024 Aug 17.
Article en En | MEDLINE | ID: mdl-39205015
ABSTRACT
Lower extremity fractures pose challenges due to prolonged healing times and limited assessment methods. Integrating wearable sensors with machine learning can help overcome these challenges by providing objective assessment and predicting fracture healing. In this retrospective study, data from a gait monitoring insole on 25 patients with closed lower extremity fractures were analyzed. Continuous underfoot loading data were processed to isolate steps, extract metrics, and feed them into three white-box machine learning models. Decision tree and Lasso regression aided feature selection, while a logistic regression classifier predicted days until fracture healing within a 30-day range. Evaluations via 10-fold cross-validation and leave-one-out validation yielded stable metrics, with the model achieving a mean accuracy, precision, recall, and F1-score of approximately 76%. Feature selection revealed the importance of underfoot loading distribution patterns, particularly on the medial surface. Our research facilitates data-driven decisions, enabling early complication detection, potentially shortening recovery times, and offering accurate rehabilitation timeline predictions.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Extremidad Inferior / Aprendizaje Automático / Dispositivos Electrónicos Vestibles Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Sensors (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Extremidad Inferior / Aprendizaje Automático / Dispositivos Electrónicos Vestibles Límite: Adult / Aged / Female / Humans / Male / Middle aged Idioma: En Revista: Sensors (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza