Your browser doesn't support javascript.
loading
Stability of the CAG Tract in the ATXN2 Gene Depends on the Localization of CAA Interruptions.
Lyasota, Oksana; Dorohova, Anna; Hernandez-Caceres, Jose Luis; Svidlov, Alexandr; Tekutskaya, Elena; Drobotenko, Mikhail; Dzhimak, Stepan.
Afiliación
  • Lyasota O; Department of Biologically Active Substances, Kuban State University, 350040 Krasnodar, Russia.
  • Dorohova A; Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russia.
  • Hernandez-Caceres JL; Department of Biologically Active Substances, Kuban State University, 350040 Krasnodar, Russia.
  • Svidlov A; Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russia.
  • Tekutskaya E; Neurodevelopment Branch, Cuban Center for Neurosciences, Havana 11600, Cuba.
  • Drobotenko M; Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russia.
  • Dzhimak S; Laboratory of Problems of Stable Isotope Spreading in Living Systems, Southern Scientific Center of the Russian Academy of Sciences, 344006 Rostov-on-Don, Russia.
Biomedicines ; 12(8)2024 Jul 24.
Article en En | MEDLINE | ID: mdl-39200113
ABSTRACT
It is known that the presence of CAA codons in the CAG tract affects the nature and time of disease onset caused by the expansion of trinucleotide repeats. The mechanisms leading to the occurrence of these diseases should be sought not only at the level of the physiological role of the ATXN2 protein, but also at the DNA level. These mechanisms are associated with non-canonical configurations (hairpins) that can form in the CAG tract. The tendency of hairpins to slide along the corresponding threads is usually considered important to explain the expansion of the CAG tract. At the same time, hairpins occur in areas of open states. Previous studies on the role of CAA interruptions have suggested that, under certain conditions, they can stabilize the dynamics of the hairpin, preventing the expansion of the CAG tract. We calculated the probability of additional open state zones occurrence in the CAG tract using an angular mathematical model of DNA. The calculations made it possible to establish that CAA interruptions affect the stability of the CAG tract, and this influence, depending on the localization of the interruption, can both increase and decrease the stability of the CAG tract.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Biomedicines Año: 2024 Tipo del documento: Article País de afiliación: Rusia Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Biomedicines Año: 2024 Tipo del documento: Article País de afiliación: Rusia Pais de publicación: Suiza