Your browser doesn't support javascript.
loading
High Stability and Low Power Nanometric Bio-Objects Trapping through Dielectric-Plasmonic Hybrid Nanobowtie.
Colapietro, Paola; Brunetti, Giuseppe; di Toma, Annarita; Ferrara, Francesco; Chiriacò, Maria Serena; Ciminelli, Caterina.
Afiliación
  • Colapietro P; Optoelectronics Laboratory, Politecnico di Bari, Via E. Orabona 6, 70125 Bari, Italy.
  • Brunetti G; Optoelectronics Laboratory, Politecnico di Bari, Via E. Orabona 6, 70125 Bari, Italy.
  • di Toma A; Optoelectronics Laboratory, Politecnico di Bari, Via E. Orabona 6, 70125 Bari, Italy.
  • Ferrara F; CNR NANOTEC-Institute of Nanotechnology, Via per Monteroni, 73200 Lecce, Italy.
  • Chiriacò MS; CNR NANOTEC-Institute of Nanotechnology, Via per Monteroni, 73200 Lecce, Italy.
  • Ciminelli C; Optoelectronics Laboratory, Politecnico di Bari, Via E. Orabona 6, 70125 Bari, Italy.
Biosensors (Basel) ; 14(8)2024 Aug 13.
Article en En | MEDLINE | ID: mdl-39194619
ABSTRACT
Micro and nano-scale manipulation of living matter is crucial in biomedical applications for diagnostics and pharmaceuticals, facilitating disease study, drug assessment, and biomarker identification. Despite advancements, trapping biological nanoparticles remains challenging. Nanotweezer-based strategies, including dielectric and plasmonic configurations, show promise due to their efficiency and stability, minimizing damage without direct contact. Our study uniquely proposes an inverted hybrid dielectric-plasmonic nanobowtie designed to overcome the primary limitations of existing dielectric-plasmonic systems, such as high costs and manufacturing complexity. This novel configuration offers significant advantages for the stable and long-term trapping of biological objects, including strong energy confinement with reduced thermal effects. The metal's efficient light reflection capability results in a significant increase in energy field confinement (EC) within the trapping site, achieving an enhancement of over 90% compared to the value obtained with the dielectric nanobowtie. Numerical simulations confirm the successful trapping of 100 nm viruses, demonstrating a trapping stability greater than 10 and a stiffness of 2.203 fN/nm. This configuration ensures optical forces of approximately 2.96 fN with an input power density of 10 mW/µm2 while preserving the temperature, chemical-biological properties, and shape of the biological sample.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanotecnología Idioma: En Revista: Biosensors (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanotecnología Idioma: En Revista: Biosensors (Basel) Año: 2024 Tipo del documento: Article País de afiliación: Italia Pais de publicación: Suiza