Your browser doesn't support javascript.
loading
Pilot study on the feasibility of shape memory alloy implantation for Vancouver type B1 periprosthetic femoral fractures in a canine model: a step toward advancing treatment modalities.
Kim, Hyunsoo; Kang, Kyu-Won; Chekalkin, Timofey; Park, Jang-Woo; Chung, Hye-Kyung; Kang, Byung-Jae; Choi, Sung-Woo.
Afiliación
  • Kim H; Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea.
  • Kang KW; BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, Korea.
  • Chekalkin T; Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea.
  • Park JW; Research and Development Center, TiNiKo Company, Limited, Osong, 28164, Korea.
  • Chung HK; Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Korea.
  • Kang BJ; Korea Radioisotope Center for Pharmaceuticals, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Korea.
  • Choi SW; Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea. bjkang81@snu.ac.kr.
J Orthop Surg Res ; 19(1): 510, 2024 Aug 27.
Article en En | MEDLINE | ID: mdl-39192290
ABSTRACT

BACKGROUND:

Cerclage wiring is commonly used for treating fractures; however, it has several limitations, including mechanical weakness, decreased blood circulation, and technical complexity. In this study, we developed an implant using a shape memory alloy (SMA) and tested its efficacy in treating Vancouver type B1 (VB1) periprosthetic femoral fractures (PFFs) in a canine model.

METHODS:

The mid-diaphyseal fracture models underwent reduction via the SMA plate (SMA group) or the cerclage cable plate (cable group) method in randomly selected pelvic limbs. An intraoperative evaluation was conducted to assess the surgical time and difficulty related to implant fitting. Clinical assessments, radiography, microcomputed tomography (micro-CT), histological analysis, positron emission tomography (PET)/CT, and galvanic corrosion analysis were conducted for 52 weeks to evaluate bone healing and blood perfusion.

RESULTS:

The results for bone healing and blood perfusion were not significantly different between the groups (p > 0.05). In addition, no evidence of galvanic corrosion was present in any of the implants. However, the median surgical time was 75 min (range, 53-82 min) for the SMA group and 126 min (range, 120-171 min) for the cable group, which was a statistically significant difference (p = 0.0286).

CONCLUSIONS:

This study assessed the ability of a newly developed shape memory alloy (SMA) to treat VB1 periprosthetic femoral fractures (PFFs) in canines for over a 52-week period and revealed outcomes comparable to those of traditional methods in terms of bone healing and mechanical stability. Despite the lower surgical complexity and potential time-saving benefits of this treatment, further research is needed to confirm its efficacy.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Estudios de Factibilidad / Aleaciones / Fracturas Periprotésicas / Fracturas del Fémur Límite: Animals Idioma: En Revista: J Orthop Surg Res Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Estudios de Factibilidad / Aleaciones / Fracturas Periprotésicas / Fracturas del Fémur Límite: Animals Idioma: En Revista: J Orthop Surg Res Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido