Your browser doesn't support javascript.
loading
Generative Models for Periodicity Detection in Noisy Signals.
Barnett, Ezekiel; Kaiser, Olga; Masci, Jonathan; Wit, Ernst C; Fulda, Stephany.
Afiliación
  • Barnett E; NNAISENSE, 6900 Lugano, Switzerland.
  • Kaiser O; NNAISENSE, 6900 Lugano, Switzerland.
  • Masci J; NNAISENSE, 6900 Lugano, Switzerland.
  • Wit EC; Institute of Computing, Università della Svizzera Italiana, 6962 Lugano, Switzerland.
  • Fulda S; Sleep Medicine Unit, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland.
Clocks Sleep ; 6(3): 359-388, 2024 Jul 23.
Article en En | MEDLINE | ID: mdl-39189192
ABSTRACT
We present the Gaussian Mixture Periodicity Detection Algorithm (GMPDA), a novel method for detecting periodicity in the binary time series of event onsets. The GMPDA addresses the periodicity detection problem by inferring parameters of a generative model. We introduce two models, the Clock Model and the Random Walk Model, which describe distinct periodic phenomena and provide a comprehensive generative framework. The GMPDA demonstrates robust performance in test cases involving single and multiple periodicities, as well as varying noise levels. Additionally, we evaluate the GMPDA on real-world data from recorded leg movements during sleep, where it successfully identifies expected periodicities despite high noise levels. The primary contributions of this paper include the development of two new models for generating periodic event behavior and the GMPDA, which exhibits high accuracy in detecting multiple periodicities even in noisy environments.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Clocks Sleep Año: 2024 Tipo del documento: Article País de afiliación: Suiza Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Clocks Sleep Año: 2024 Tipo del documento: Article País de afiliación: Suiza Pais de publicación: Suiza