Your browser doesn't support javascript.
loading
Kernel Estimation of Bivariate Time-varying Coefficient Model for Longitudinal Data with Terminal Event.
Wang, Yue; Nan, Bin; Kalbfleisch, John D.
Afiliación
  • Wang Y; Department of Statistics, University of California, Irvine.
  • Nan B; Department of Statistics, University of California, Irvine.
  • Kalbfleisch JD; Department of Biostatistics, University of Michigan, Ann Arbor.
J Am Stat Assoc ; 119(546): 1102-1111, 2024.
Article en En | MEDLINE | ID: mdl-39184839
ABSTRACT
We propose a nonparametric bivariate time-varying coefficient model for longitudinal measurements with the occurrence of a terminal event that is subject to right censoring. The time-varying coefficients capture the longitudinal trajectories of covariate effects along with both the followup time and the residual lifetime. The proposed model extends the parametric conditional approach given terminal event time in recent literature, and thus avoids potential model misspecification. We consider a kernel smoothing method for estimating regression coefficients in our model and use cross-validation for bandwidth selection, applying undersmoothing in the final analysis to eliminate the asymptotic bias of the kernel estimator. We show that the kernel estimates follow a finite-dimensional normal distribution asymptotically under mild regularity conditions, and provide an easily computed sandwich covariance matrix estimator. We conduct extensive simulations that show desirable performance of the proposed approach, and apply the method to analyzing the medical cost data for patients with end-stage renal disease.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Am Stat Assoc Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Am Stat Assoc Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos