Your browser doesn't support javascript.
loading
Metabolic engineering of the oleaginous yeast Yarrowia lipolytica for 2-phenylethanol overproduction.
Qian, Tao; Wei, Wenping; Dong, Yuxing; Zhang, Ping; Chen, Xiaochuan; Chen, Pinru; Li, Mengfan; Ye, Bang-Ce.
Afiliación
  • Qian T; Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
  • Wei W; Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
  • Dong Y; Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
  • Zhang P; Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shang Hai 200237, China.
  • Chen X; Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
  • Chen P; Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
  • Li M; Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
  • Ye BC; Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China; Laboratory of Biosystems and Microanalysis, State Key Laboratory
Bioresour Technol ; 411: 131354, 2024 Nov.
Article en En | MEDLINE | ID: mdl-39182792
ABSTRACT
The rose fragrance molecule 2-phenylethanol (2-PE) has huge market demand in the cosmetics, food and pharmaceutical industries. However, current 2-PE synthesis methods do not meet the efficiency market requirement. In this study, CRISPR-Cas9-related metabolic engineering strategies were applied to Yarrowia lipolytica for the de novo biosynthesis of 2-PE. Initially, overexpressing exogenous feedback-resistant EcAROGfbr and EcPheAfbr increased 2-PE production to 276.3 mg/L. Subsequently, the ylARO10 and ylPAR4 from endogenous genes were enhanced with the multi-copies to increase the titer to 605 mg/L. Knockout of ylTYR1 and enhancement of shikimate pathway by removing the precursor metabolic bottleneck and overexpressing the genes ylTKT, ylARO1, and ylPHA2 resulted in a significant increase of the 2-PE titer to 2.4 g/L at 84 h, with the yield of 0.06 g/gglu, which is the highest yield for de novo synthesis in yeast. This study provides a valuable precedent for the efficient biosynthesis of shikimate pathway derivatives.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Alcohol Feniletílico / Yarrowia / Ingeniería Metabólica Idioma: En Revista: Bioresour Technol Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Alcohol Feniletílico / Yarrowia / Ingeniería Metabólica Idioma: En Revista: Bioresour Technol Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido