Your browser doesn't support javascript.
loading
Squeezing Out Nanoparticles from Perovskites: Controlling Exsolution with Pressure.
López-García, Andrés; Remiro-Buenamañana, Sonia; Neagu, Dragos; Carrillo, Alfonso J; Serra, José Manuel.
Afiliación
  • López-García A; Instituto de Tecnología Química (Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas), València, 46022, Spain.
  • Remiro-Buenamañana S; Instituto de Tecnología Química (Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas), València, 46022, Spain.
  • Neagu D; Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, G1 1XQ, United Kingdom.
  • Carrillo AJ; Instituto de Tecnología Química (Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas), València, 46022, Spain.
  • Serra JM; Instituto de Tecnología Química (Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas), València, 46022, Spain.
Small ; : e2403544, 2024 Aug 24.
Article en En | MEDLINE | ID: mdl-39180444
ABSTRACT
Nanoparticle exsolution has emerged as a versatile method to functionalize oxides with robust metallic nanoparticles for catalytic and energy applications. By modifying certain external parameters during thermal reduction (temperature, time, reducing gas), some morphological and/or compositional properties of the exsolved nanoparticles can be tuned. Here, it is shown how the application of high pressure (<100 bar H2) enables the control of the exsolution of ternary FeCoNi alloyed nanoparticles from a double perovskite. H2 pressure affects the lattice expansion and the nanoparticle characteristics (size, population, and composition). The composition of the alloyed nanoparticles could be controlled, showing a reversal of the expected thermodynamic trend at 10 and 50 bar, where Fe becomes the main component instead of Ni. In addition, pressure drastically lowers the exsolution temperature to 300 °C, resulting in unprecedented highly-dispersed and small-sized nanoparticles with a similar composition to those obtained at 600 °C and 10 bar. The mechanisms behind the effects of pressure on exsolution are discussed, involving kinetic, surface thermodynamics, and lattice-strain factors. A volcano-like trend of the exsolution extent suggests that competing pressure-dependent mechanisms govern the process. Pressure emerges as a new design tool for metallic nanoparticle exsolution enabling novel nanocatalysts and surface-functionalized materials.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: España Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Small Asunto de la revista: ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: España Pais de publicación: Alemania