Your browser doesn't support javascript.
loading
Persulfate activation by biochar and iron: Effect of chloride on formation of reactive species and transformation of N,N-diethyl-m-toluamide (DEET).
Zhuang, Yiling; Spahr, Stephanie; Lutze, Holger V; Reith, Christoph J; Hagemann, Nikolas; Paul, Andrea; Haderlein, Stefan B.
Afiliación
  • Zhuang Y; Department of Ecohydrology and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany; Department of Geosciences, Environmental Mineralogy and Chemistry, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübin
  • Spahr S; Department of Ecohydrology and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany; Department of Geosciences, Environmental Mineralogy and Chemistry, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübin
  • Lutze HV; Institute IWAR, Chair of Environmental Analytics and Pollutants, Technical University of Darmstadt, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany; IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Ess
  • Reith CJ; Department of Ecohydrology and Biogeochemistry, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany; Department of Geosciences, Environmental Mineralogy and Chemistry, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübin
  • Hagemann N; Environmental Analytics, Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland; Ithaka Institut gGmbH, Altmutterweg 21, 63773 Goldbach, Germany.
  • Paul A; BAM Federal Institute of Materials Research and Testing, Richard-Willstaetter-Str. 11, 12489 Berlin, Germany.
  • Haderlein SB; Department of Geosciences, Environmental Mineralogy and Chemistry, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, 72076 Tübingen, Germany.
Water Res ; 265: 122267, 2024 Nov 01.
Article en En | MEDLINE | ID: mdl-39178590
ABSTRACT
Fenton-like processes using persulfate for oxidative water treatment and contaminant removal can be enhanced by the addition of redox-active biochar, which accelerates the reduction of Fe(III) to Fe(II) and increases the yield of reactive species that react with organic contaminants. However, available data on the formation of non-radical or radical species in the biochar/Fe(III)/persulfate system are inconsistent, which limits the evaluation of treatment efficiency and applicability in different water matrices. Based on competition kinetics calculations, we employed different scavengers and probe compounds to systematically evaluate the effect of chloride in presence of organic matter on the formation of major reactive species in the biochar/Fe(III)/persulfate system for the transformation of the model compound N,N­diethyl-m-toluamide (DEET) at pH 2.5. We show that the transformation of methyl phenyl sulfoxide (PMSO) to methyl phenyl sulfone (PMSO2) cannot serve as a reliable indicator for Fe(IV), as previously suggested, because sulfate radicals also induce PMSO2 formation. Although the formation of Fe(IV) cannot be completely excluded, sulfate radicals were identified as the major reactive species in the biochar/Fe(III)/persulfate system in pure water. In the presence of dissolved organic matter, low chloride concentrations (0.1 mM) shifted the major reactive species likely to hydroxyl radicals. Higher chloride concentrations (1 mM), as present in a mining-impacted acidic surface water, resulted in the formation of another reactive species, possibly Cl2•-, and efficient DEET degradation. To tailor the application of this oxidation process, the water matrix must be considered as a decisive factor for reactive species formation and contaminant removal.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Carbón Orgánico / DEET / Hierro Idioma: En Revista: Water Res Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Carbón Orgánico / DEET / Hierro Idioma: En Revista: Water Res Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido