Your browser doesn't support javascript.
loading
Evaluation of Machine Learning Algorithms for Pressure Injury Risk Assessment in a Hospital with Limited IT Resources.
Abi Khalil, Cynthia; Saab, Antoine; Rahme, Jihane; Abla, Jana; Seroussi, Brigitte.
Afiliación
  • Abi Khalil C; Sorbonne Université, Université Sorbonne Paris Nord, INSERM, Laboratoire d'Informatique Médicale et d'Ingénierie des connaissances en e-Santé, LIMICS, F-75006 Paris, France.
  • Saab A; Nursing Administration, Lebanese Hospital Geitaoui-UMC, Beirut, Lebanon.
  • Rahme J; Sorbonne Université, Université Sorbonne Paris Nord, INSERM, Laboratoire d'Informatique Médicale et d'Ingénierie des connaissances en e-Santé, LIMICS, F-75006 Paris, France.
  • Abla J; Quality and Safety Department, Lebanese Hospital Geitaoui-UMC, Beirut, Lebanon.
  • Seroussi B; Nursing Administration, Lebanese Hospital Geitaoui-UMC, Beirut, Lebanon.
Stud Health Technol Inform ; 316: 1033-1037, 2024 Aug 22.
Article en En | MEDLINE | ID: mdl-39176967
ABSTRACT
Clinical decision support systems for Nursing Process (NP-CDSSs) help resolve a critical challenge in nursing decision-making through automating the Nursing Process. NP-CDSSs are more effective when they are linked to Electronic Medical Record (EMR) Data allowing for the computation of Risk Assessment Scores. Braden scale (BS) is a well-known scale used to identify the risk of Hospital-Acquired Pressure Injuries (HAPIs). While BS is widely used, its specificity for identifying high-risk patients is limited. This study develops and evaluates a Machine Learning (ML) model to predict the HAPI risk, leveraging EMR readily available data. Various ML algorithms demonstrated superior performance compared to BS (pooled model AUC/F1-score of 0.85/0.8 vs. AUC of 0.63 for BS). Integrating ML into NP-CDSSs holds promise for enhancing nursing assessments and automating risk analyses even in hospitals with limited IT resources, aiming for better patient safety.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sistemas de Apoyo a Decisiones Clínicas / Úlcera por Presión / Registros Electrónicos de Salud / Aprendizaje Automático Límite: Humans Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2024 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Sistemas de Apoyo a Decisiones Clínicas / Úlcera por Presión / Registros Electrónicos de Salud / Aprendizaje Automático Límite: Humans Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2024 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Países Bajos