Your browser doesn't support javascript.
loading
Evaluation of BERT-Based Models on Patient Data from French Social Media.
Le Priol, Emma; Talmatkadi, Manissa; Schück, Stéphane; Texier, Nathalie; Burgun, Anita.
Afiliación
  • Le Priol E; HeKA team, Inria, Inserm, France.
  • Talmatkadi M; Université Paris-Cité, France.
  • Schück S; Kap Code, Paris, France.
  • Texier N; Kap Code, Paris, France.
  • Burgun A; Kap Code, Paris, France.
Stud Health Technol Inform ; 316: 894-898, 2024 Aug 22.
Article en En | MEDLINE | ID: mdl-39176937
ABSTRACT
With the objective of extracting new knowledge about rare diseases from social media messages, we evaluated three models on a Named Entity Recognition (NER) task, consisting of extracting phenotypes and treatments from social media messages. We trained the three models on a dataset with social media messages about Developmental and Epileptic Encephalopathies and more common diseases. This preliminary study revealed that CamemBERT and CamemBERT-bio exhibit similar performance on social media testimonials, slightly outperforming DrBERT. It also highlighted that their performance was lower on this type of data than on structured health datasets. Limitations, including a narrow focus on NER performance and dataset-specific evaluation, call for further research to fully assess model capabilities on larger and more diverse datasets.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Medios de Comunicación Sociales Límite: Humans País/Región como asunto: Europa Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2024 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Medios de Comunicación Sociales Límite: Humans País/Región como asunto: Europa Idioma: En Revista: Stud Health Technol Inform Asunto de la revista: INFORMATICA MEDICA / PESQUISA EM SERVICOS DE SAUDE Año: 2024 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Países Bajos