Your browser doesn't support javascript.
loading
Overcoming Resistance in Cancer Therapy: Computational Exploration of PIK3CA Mutations, Unveiling Novel Non-Toxic Inhibitors, and Molecular Insights Into Targeting PI3Kα.
Kandoussi, Ilham; El Haddoumi, Ghyzlane; Mansouri, Mariam; Belyamani, Lahcen; Ibrahimi, Azeddine; Eljaoudi, Rachid.
Afiliación
  • Kandoussi I; Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco.
  • El Haddoumi G; Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco.
  • Mansouri M; Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco.
  • Belyamani L; Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco.
  • Ibrahimi A; Emergency Department, Military Hospital Mohammed V, Medical and Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco.
  • Eljaoudi R; Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco.
Bioinform Biol Insights ; 18: 11779322241269386, 2024.
Article en En | MEDLINE | ID: mdl-39176270
ABSTRACT
Phosphoinositide-3-kinases (PI3 K) are pivotal regulators of cell signaling implicated in various cancers. Particularly, mutations in the PIK3CA gene encoding the p110α catalytic subunit drive oncogenic signaling, making it an attractive therapeutic target. Our study conducted in silico exploration of 31 PIK3CA mutations across breast, endometrial, colon, and ovarian cancers, assessing their impacts on response to PI3Kα inhibitors and identifying potential non-toxic inhibitors and also elucidating their effects on protein stability and flexibility. Specifically, we observed significant alterations in the stability and flexibility of the PI3 K protein induced by these mutations. Through molecular docking analysis, we evaluated the binding interactions between the selected inhibitors and the PI3 K protein. The filtration of ligands involved calculating chemical descriptors, incorporating Veber and Lipinski rules, as well as IC50 values and toxicity predictions. This process reduced the initial dataset of 1394 ligands to 12 potential non-toxic inhibitors, and four reference inhibitors with significant biological activity in clinical trials were then chosen based on their physico-chemical properties. This analysis revealed Lig5's exceptional performance, exhibiting superior affinity and specificity compared to established reference inhibitors such as pictilisib. Lig5 formed robust binding interactions with the PI3 K protein, suggesting its potential as a highly effective therapeutic agent against PI3 K-driven cancers. Furthermore, molecular dynamics simulations provided valuable insights into Lig5's stability and its interactions with PI3 K over 100 ns. These simulations supported Lig5's potential as a versatile inhibitor capable of effectively targeting various mutational profiles of PI3 K, thereby mitigating issues related to resistance and toxicity commonly associated with current inhibitors.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Bioinform Biol Insights Año: 2024 Tipo del documento: Article País de afiliación: Marruecos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Bioinform Biol Insights Año: 2024 Tipo del documento: Article País de afiliación: Marruecos Pais de publicación: Estados Unidos