Your browser doesn't support javascript.
loading
Accurate modeling of the potential energy surface of atmospheric molecular clusters boosted by neural networks.
Kubecka, Jakub; Ayoubi, Daniel; Tang, Zeyuan; Knattrup, Yosef; Engsvang, Morten; Wu, Haide; Elm, Jonas.
Afiliación
  • Kubecka J; Department of Chemistry, Aarhus University Langelandsgade 140 8000 Aarhus C Denmark ja-kub-ecka@chem.au.dk +420 724946622.
  • Ayoubi D; Department of Chemistry, Aarhus University Langelandsgade 140 8000 Aarhus C Denmark ja-kub-ecka@chem.au.dk +420 724946622.
  • Tang Z; Center for Interstellar Catalysis, Department of Physics and Astronomy, Aarhus University Ny Munkegade 120 8000 Aarhus C Denmark.
  • Knattrup Y; Department of Chemistry, Aarhus University Langelandsgade 140 8000 Aarhus C Denmark ja-kub-ecka@chem.au.dk +420 724946622.
  • Engsvang M; Department of Chemistry, Aarhus University Langelandsgade 140 8000 Aarhus C Denmark ja-kub-ecka@chem.au.dk +420 724946622.
  • Wu H; Department of Chemistry, Aarhus University Langelandsgade 140 8000 Aarhus C Denmark ja-kub-ecka@chem.au.dk +420 724946622.
  • Elm J; Department of Chemistry, Aarhus University Langelandsgade 140 8000 Aarhus C Denmark ja-kub-ecka@chem.au.dk +420 724946622.
Env Sci Adv ; 2024 Aug 13.
Article en En | MEDLINE | ID: mdl-39176037
ABSTRACT
The computational cost of accurate quantum chemistry (QC) calculations of large molecular systems can often be unbearably high. Machine learning offers a lower computational cost compared to QC methods while maintaining their accuracy. In this study, we employ the polarizable atom interaction neural network (PaiNN) architecture to train and model the potential energy surface of molecular clusters relevant to atmospheric new particle formation, such as sulfuric acid-ammonia clusters. We compare the differences between PaiNN and previous kernel ridge regression modeling for the Clusteromics I-V data sets. We showcase three models capable of predicting electronic binding energies and interatomic forces with mean absolute errors of <0.3 kcal mol-1 and <0.2 kcal mol-1 Å-1, respectively. Furthermore, we demonstrate that the error of the modeled properties remains below the chemical accuracy of 1 kcal mol-1 even for clusters vastly larger than those in the training database (up to (H2SO4)15(NH3)15 clusters, containing 30 molecules). Consequently, we emphasize the potential applications of these models for faster and more thorough configurational sampling and for boosting molecular dynamics studies of large atmospheric molecular clusters.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Env Sci Adv Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Env Sci Adv Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido