Your browser doesn't support javascript.
loading
Microbial production of an aromatic homopolyester.
Lee, Youngjoon; Kang, Minju; Jang, Woo Dae; Choi, So Young; Yang, Jung Eun; Lee, Sang Yup.
Afiliación
  • Lee Y; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Ko
  • Kang M; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Ko
  • Jang WD; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Ko
  • Choi SY; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Ko
  • Yang JE; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Ko
  • Lee SY; Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Ko
Trends Biotechnol ; 2024 Aug 06.
Article en En | MEDLINE | ID: mdl-39174388
ABSTRACT
We report the development of a metabolically engineered bacterium for the fermentative production of polyesters containing aromatic side chains, serving as sustainable alternatives to petroleum-based plastics. A metabolic pathway was constructed in an Escherichia coli strain to produce poly[d-phenyllactate(PhLA)], followed by three strategies to enhance polymer production. First, polyhydroxyalkanoate (PHA) granule-associated proteins (phasins) were introduced to increase the polymer accumulation. Next, metabolic engineering was performed to redirect the metabolic flux toward PhLA. Furthermore, PHA synthase was engineered based on in silico simulation results to enhance the polymerization of PhLA. The final strain was capable of producing 12.3 g/l of poly(PhLA), marking it the first bio-based process for producing an aromatic homopolyester. Additional heterologous gene introductions led to the high level production of poly(3-hydroxybutyrate-co-11.7 mol% PhLA) copolymer (61.4 g/l). The strategies described here will be useful for the bio-based production of aromatic polyesters from renewable resources.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Trends Biotechnol Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Trends Biotechnol Año: 2024 Tipo del documento: Article Pais de publicación: Reino Unido