Your browser doesn't support javascript.
loading
Bioinspired Hierarchical T Structures for Tunable Wettability and Droplet Manipulation by Facile and Scalable Nanoimprinting.
Chen, Xiaofeng; Yang, Guiyan; Cao, Xinhe; Zhu, Xinyue; Wang, Xinyu; Chen, Si; Cui, Yushuang; Ge, Haixiong; Li, Yang.
Afiliación
  • Chen X; Department of Materials Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China.
  • Yang G; National Laboratory of Solid State Microstructures, Nanjing 210093, P. R. China.
  • Cao X; Department of Materials Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China.
  • Zhu X; National Laboratory of Solid State Microstructures, Nanjing 210093, P. R. China.
  • Wang X; Department of Materials Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China.
  • Chen S; National Laboratory of Solid State Microstructures, Nanjing 210093, P. R. China.
  • Cui Y; Department of Materials Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China.
  • Ge H; National Laboratory of Solid State Microstructures, Nanjing 210093, P. R. China.
  • Li Y; Department of Materials Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China.
Article en En | MEDLINE | ID: mdl-39166707
ABSTRACT
Developing surfaces that effectively repel low-surface-tension liquids with tunable adhesive properties remains a pivotal challenge. Micronano hierarchical re-entrant structures emerge as a promising solution, offering a robust structural defense against liquid penetration, minimizing area fraction, and creating narrow gaps that generate substantial upward Laplace pressure. However, the absence of an efficient, scalable, and tunable construction method has impeded their widespread applications. Here, drawing inspiration from springtail epidermal structures, octopus suckers, and rose petals, we present a scalable manufacturing strategy for artificial micronano hierarchical T-shaped structures. This strategy employs double-transfer UV-curing nanoimprint lithography to form nanostructures on microstructured surfaces, offering high structural tunability. This approach enables precise control over topography, feature size, and arrangement of nano- and microscale sections, resulting in superamphiphobic surfaces that exhibit high contact angles (>150°) and tunable adhesive forces for low-surface-energy liquids. These surfaces can be applied to droplet-based microreactors, programmable droplet-transfer systems, and self-cleaning surfaces suitable for various liquids, particularly those with low surface tension. Remarkably, we have also succeeded in fabricating the hierarchical structures on flexible and transparent substrates. We demonstrate the advantages of this strategy in the fabrication of hierarchical micronanostructures, opening up a wide range of potential applications.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos