Your browser doesn't support javascript.
loading
Surface Functionalization of 3D-Printed Scaffolds with Seed-Assisted Hydrothermally Grown ZnO Nanoarrays for Bone Tissue Engineering.
Kim, Dahong; Kim, Nam Woon; Kim, Tae Gun; Lee, Jihye; Jung, Joo-Yun; Hur, Shin; Lee, Jaejong; Lee, Kangwon; Park, Su A.
Afiliación
  • Kim D; Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea.
  • Kim NW; Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.
  • Kim TG; Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea.
  • Lee J; Center for Analysis and Evaluation, National Nanofab Center (NNFC), Daejeon 34141, Republic of Korea.
  • Jung JY; Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea.
  • Hur S; Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea.
  • Lee J; Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea.
  • Lee K; Nano-Convergence Manufacturing Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea.
  • Park SA; Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea.
ACS Appl Mater Interfaces ; 16(34): 45389-45398, 2024 Aug 28.
Article en En | MEDLINE | ID: mdl-39150145
ABSTRACT
Bioactive metal-based nanostructures, particularly zinc oxide (ZnO), are promising materials for bone tissue engineering. However, integrating them into 3D-printed polymers using traditional blending methods reduces the cell performance. Alternative surface deposition techniques often require extreme conditions that are unsuitable for polymers. To address these issues, we propose a metal-assisted hydrothermal synthesis method to modify 3D printed polycaprolactone (PCL) scaffolds with ZnO nanoparticles (NPs), facilitating the growth of ZnO nanoarrays (NAs) at a low-temperature (55 °C). Physicochemical characterizations revealed that the ZnO NPs form both physical and chemical bonds with the PCL surface; chemical bonding occurs between the carboxylate groups of PCL and Zn(OH)2 during seed deposition and hydrothermal synthesis. The ZnO NPs and NAs grown for a longer time (18 h) on the surface of PCL scaffolds exhibit significant proliferation and early differentiation of osteoblast-like cells. The proposed method is suitable for the surface modification of thermally degradable polymers, opening up new possibilities for the deposition of diverse metals.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Osteoblastos / Poliésteres / Óxido de Zinc / Ingeniería de Tejidos / Andamios del Tejido / Impresión Tridimensional Límite: Humans Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Osteoblastos / Poliésteres / Óxido de Zinc / Ingeniería de Tejidos / Andamios del Tejido / Impresión Tridimensional Límite: Humans Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos