Your browser doesn't support javascript.
loading
Regional heterogeneity in the membrane properties of mouse striatal neurons.
Chuhma, Nao; Rayport, Stephen.
Afiliación
  • Chuhma N; Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, United States.
  • Rayport S; Department of Psychiatry, Columbia University, New York, NY, United States.
Front Cell Neurosci ; 18: 1412897, 2024.
Article en En | MEDLINE | ID: mdl-39144155
ABSTRACT
The cytoarchitecture of the striatum is remarkably homogeneous, in contrast to the regional variation in striatal functions. Whether differences in the intrinsic membrane properties of striatal neurons contribute to regional heterogeneity has not been addressed systematically. We made recordings throughout the young adult mouse striatum under identical conditions, with synaptic input blocked, from four major striatal neuron types, namely, the two subtypes of spiny projection neurons (SPNs), cholinergic interneurons (ChIs), and fast-spiking GABAergic interneurons (FSIs), sampling at least 100 cells per cell type. Regional variation manifested across all cell types. All cell types in the nucleus accumbens (NAc) shell had higher input impedance and increased excitability. Cells in the NAc core were differentiated from the caudate-putamen (CPu) for both SPN subtypes by smaller action potentials and increased excitability. Similarity between the two SPN subtypes showed regional variation, differing more in the NAc than in the CPu. So, in the Str, both the intrinsic properties of interneurons and projection neurons are regionally heterogeneous, with the greatest difference between the NAc and CPu; greater excitability of NAc shell neurons may make the region more susceptible to activity-dependent plasticity.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Front Cell Neurosci Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Front Cell Neurosci Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Suiza