Your browser doesn't support javascript.
loading
Magneto-Controlled Tubular Liquid Actuators with Pore Engineering for Liquid Transport and Regulation.
Zhao, Huan; Wen, Ruyi; Zhang, Liyun; Chen, Linfeng; Li, Huizeng; Xia, Fan; Song, Yanlin.
Afiliación
  • Zhao H; State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China.
  • Wen R; State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China.
  • Zhang L; State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China.
  • Chen L; State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China.
  • Li H; Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.
  • Xia F; State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China.
  • Song Y; Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, 100190, P. R. China.
Adv Sci (Weinh) ; : e2406325, 2024 Aug 13.
Article en En | MEDLINE | ID: mdl-39137359
ABSTRACT
Liquid manipulation using tubular actuators finds diverse applications ranging from microfluidics, printing, liquid transfer to micro-reactors. Achieving flexible and simple regulation of manipulated liquid droplets during transport is crucial for the tubular liquid actuators to perform complex and multiple functions, yet it remains challenging. Here, a facile tubular actuator for directional transport of various liquid droplets under the control of an externally applied magnetic field is presented. The surfaces of the actuator can be engineered with submillimeter-sized through-hole pores, which enables the liquid droplet to be easily modulated in the transport process. Furthermore, the liquid actuator with featured through-hole pores is expanded to function as a switch in an integrated external electric circuit by magnetically controlling the motion of a conductive liquid droplet. This work develops a strategy for regulating liquid droplets in the tubular actuation systems, which may inspire ideas for designing functional liquid actuators with potential applications in microfluidics, microchemical reaction, liquid switch, and liquid robotics.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Sci (Weinh) Año: 2024 Tipo del documento: Article Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Sci (Weinh) Año: 2024 Tipo del documento: Article Pais de publicación: Alemania