Your browser doesn't support javascript.
loading
Comparative Proteomic Analysis Provides New Insights into Improved Grain-filling in Ratoon Season Rice.
Zeng, Yuhang; Zi, Hongjuan; Wang, Zhaocheng; Min, Xiumei; Chen, Mengying; Zhang, Bianhong; Li, Zhong; Lin, Wenxiong; Zhang, Zhixing.
Afiliación
  • Zeng Y; College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
  • Zi H; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province, Fuzhou, 350002, China.
  • Wang Z; College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
  • Min X; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province, Fuzhou, 350002, China.
  • Chen M; College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
  • Zhang B; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province, Fuzhou, 350002, China.
  • Li Z; College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
  • Lin W; Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province, Fuzhou, 350002, China.
  • Zhang Z; College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
Rice (N Y) ; 17(1): 50, 2024 Aug 13.
Article en En | MEDLINE | ID: mdl-39136854
ABSTRACT
Grain-filling of rice spikelets (particularly for the later flowering inferior spikelets) is an important characteristic that affects both quality and yield. Rice ratooning technology is used to cultivate a second crop from dormant buds that sprout from stubble left after the first harvest. This study used two rice varieties, the conventional indica rice 'Jinhui 809' and the hybrid indica-japonica rice 'Yongyou 1540', to assess the impact of rice ratooning on grain-filling. The results indicated that the grain-filling process in inferior spikelets of ratoon season rice (ISR) showed significant improvement compared to inferior spikelets of main crop (late season) rice (ISL). This improvement was evident in the earlier onset of rapid grain-filling, higher seed-setting percentage, and improved grain quality. A label-free quantitative proteomic analysis using mass spectrometry identified 1724 proteins with significant abundance changes, shedding light on the molecular mechanisms behind the improved grain-filling in ISR. The functional analysis of these proteins indicated that ratooning stimulated the metabolic processes of sucrose-starch, trehalose, and hormones in rice inferior spikelets, leading to enhanced enzyme activities related to starch synthesis, elevated concentrations of trehalose-6-phosphate (T6P), indole-3-acetic acid (IAA) and zeatin riboside (ZR) during the active grain-filling phase. This research highlighted the importance of the GF14f protein as a key regulator in the grain-filling process of ISR. It revealed that GF14f transcriptional and protein levels declined more rapidly in ISR compared to ISL during grain-filling. Additionally, the GF14f-RNAi plants specific to the endosperm exhibited improved quality in inferior spikelets. These findings suggest that the enhancement of starch synthesis, increased levels of IAA, ZR, and T6P, along with the rapid decrease in GF14f protein, play a role in enhancing grain-filling in ratoon season rice.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Rice (N Y) Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Rice (N Y) Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos