Your browser doesn't support javascript.
loading
Metal-Organic Framework-Derived High-Entropy Oxides as Coreaction Accelerators for an Efficient Luminol/Dissolved Oxygen Electrochemiluminescence System for Ultrasensitive Mercury Detection.
Hussain, Altaf; Bushira, Fuad Abduro; Dong, Zhiyong; Alboull, Ala'a Mhmoued Abdllh; Tessema, Solomon Sime; Suleiman, Mohammed Yahya; Xu, Guobao.
Afiliación
  • Hussain A; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
  • Bushira FA; School of Applied Chemistry and Engineering, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China.
  • Dong Z; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
  • Alboull AMA; School of Applied Chemistry and Engineering, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China.
  • Tessema SS; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
  • Suleiman MY; School of Applied Chemistry and Engineering, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China.
  • Xu G; State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
Anal Chem ; 96(33): 13504-13511, 2024 Aug 20.
Article en En | MEDLINE | ID: mdl-39132753
ABSTRACT
The development of luminol-dissolved O2 (luminol-DO) electrochemiluminescence (ECL) systems is crucial for real-world applications. Despite its stability and low biotoxicity, luminol-DO ECL systems struggle with low ECL performance due to their low reactivity. Investigating new materials like coreactant accelerators increases reactive oxygen species (ROS) formation and enhances luminol-DO ECL intensity. Motivated by the ROS-mediated ECL process, for the first time, we designed oxygen vacancy (OV)-rich high-entropy oxides (HEO) with five metal components [(FeCoNiCuZn)O] derived from metal-organic frameworks (MOFs) as coreaction accelerators to establish efficient luminol-DO ECL systems. High entropy (HE) MOFs were annealed at four different temperatures (600, 700, 800, and 900 °C). Indeed, the HE MOFs annealed at 800 °C (HEO-800) showed a 120-fold stronger ECL intensity compared to the bare glassy carbon electrode in the luminol-DO ECL system. The enhanced ECL performance can be attributed to the porous structure, unique morphology, heterostructures, high-density active sites, rich OV, unsaturated metals, and synergistic impact, which act as catalysts to accelerate the conversion of DO to ROS. The developed HEO-800-based luminol-DO ECL system can be effectively used for the high-sensitivity detection of mercury ions (Hg2+). The system detected Hg2+ over a wide concentration range from 0.1 nM to 100 µM, with a detection limit of 0.02 nM. The sensing mechanism relied on high-affinity metallophilic Hg2+-HEO-800 interactions, effectively quenching the ECL intensity of the luminol-DO/HEO-800 ECL system. The ECL sensing platform, developed without H2O2, offers a novel method for detecting substances, demonstrating significant potential for clinical diagnosis and biomarker analysis.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Anal Chem Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Anal Chem Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos