Your browser doesn't support javascript.
loading
Learning a Tracking Controller for Rolling µbots.
Beaver, Logan E; Sokolich, Max; Alsalehi, Suhail; Weiss, Ron; Das, Sambeeta; Belta, Calin.
Afiliación
  • Beaver LE; Division of Systems Engineering, Boston University, Boston, MA 02215, USA.
  • Sokolich M; Department of Mechanical Engineering, University of Delaware, Newark, DE 29716, USA.
  • Alsalehi S; Division of Systems Engineering, Boston University, Boston, MA 02215, USA.
  • Weiss R; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
  • Das S; Department of Mechanical Engineering, University of Delaware, Newark, DE 29716, USA.
  • Belta C; Division of Systems Engineering, Boston University, Boston, MA 02215, USA.
IEEE Robot Autom Lett ; 9(2): 1819-1826, 2024 Feb.
Article en En | MEDLINE | ID: mdl-39131948
ABSTRACT
Micron-scale robots (µbots) have recently shown great promise for emerging medical applications. Accurate control of µbots, while critical to their successful deployment, is challenging. In this work, we consider the problem of tracking a reference trajectory using a µbot in the presence of disturbances and uncertainty. The disturbances primarily come from Brownian motion and other environmental phenomena, while the uncertainty originates from errors in the model parameters. We model the µbot as an uncertain unicycle that is controlled by a global magnetic field. To compensate for disturbances and uncertainties, we develop a nonlinear mismatch controller. We define the model mismatch error as the difference between our model's predicted velocity and the actual velocity of the µbot. We employ a Gaussian Process to learn the model mismatch error as a function of the applied control input. Then we use a least-squares minimization to select a control action that minimizes the difference between the actual velocity of the µbot and a reference velocity. We demonstrate the online performance of our joint learning and control algorithm in simulation, where our approach accurately learns the model mismatch and improves tracking performance. We also validate our approach in an experiment and show that certain error metrics are reduced by up to 40%.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: IEEE Robot Autom Lett Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: IEEE Robot Autom Lett Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos