Your browser doesn't support javascript.
loading
Photochemical Generation and Characterization of C-Aminophenyl-Nitrilimines: Insights on Their Bond-Shift Isomers by Matrix-Isolation IR Spectroscopy and Density Functional Theory Calculations.
Lopes Jesus, A J; Nunes, Cláudio M; Ferreira, Gil A; Keyvan, Kiarash; Fausto, R.
Afiliación
  • Lopes Jesus AJ; University of Coimbra, CQC-IMS, Faculty of Pharmacy, 3004-295 Coimbra, Portugal.
  • Nunes CM; University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal.
  • Ferreira GA; University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal.
  • Keyvan K; University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal.
  • Fausto R; University of Coimbra, CQC-IMS, Department of Chemistry, 3004-535 Coimbra, Portugal.
Molecules ; 29(15)2024 Jul 25.
Article en En | MEDLINE | ID: mdl-39124902
ABSTRACT
The intriguing ability of C-phenyl-nitrilimine to co-exist as allenic and propargylic bond-shift isomers motivated us to investigate how substituents in the phenyl ring influence this behavior. Building on our previous work on the meta- and para-OH substitution, here we extended this investigation to explore the effect of the NH2 substitution. For this purpose, C-(4-aminophenyl)- and C-(3-aminophenyl)-nitrilimines were photogenerated in an argon matrix at 15 K by narrowband UV-light irradiation (λ = 230 nm) of 5-(4-aminophenyl)- and 5-(3-aminophenyl)-tetrazole, respectively. The produced nitrilimines were further photoisomerized to carbodiimides via 1H-diazirines by irradiations at longer wavelengths (λ = 380 or 330 nm). Combining IR spectroscopic measurements and DFT calculations, it was found that the para-NH2-substituted nitrilimine exists as a single isomeric structure with a predominant allenic character. In contrast, the meta-NH2-substituted nitrilimine co-exists as two bond-shift isomers characterized by propargylic and allenic structures. To gain further understanding of the effects of phenyl substitution on the bond-shift isomerism of the nitrilimine fragment, we compared geometric and charge distribution data derived from theoretical calculations performed for C-phenyl-nitrilimine with those performed for the derivatives resulting from NH2 (electron-donating group) and NO2 (electron-withdrawing group) phenyl substitutions.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Portugal Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Portugal Pais de publicación: Suiza