Your browser doesn't support javascript.
loading
A Non-Source Optical Fiber Sensor for Multi-Point Methane Detection.
Ma, Li; Liu, Xu; Si, Ganshang.
Afiliación
  • Ma L; School of Civil and Hydraulic Engineering, Bengbu University, Bengbu 233030, China.
  • Liu X; Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
  • Si G; School of Electronic and Electrical Engineering, Bengbu University, Bengbu 233030, China.
Sensors (Basel) ; 24(15)2024 Aug 03.
Article en En | MEDLINE | ID: mdl-39124077
ABSTRACT
Fast, accurate, real-time measurement of gas concentration is an important task for preventing coal mining disasters. In order to develop an accurate monitoring method for methane gas concentration at different locations in a mine environment, a non-source optical fiber sensor for multi-point methane detection has been developed in this paper. A 16-channel fiber splitter and a multi-channel time-sharing acquisition module are employed within the sensor, enabling simultaneous detection of methane gas at 16 points by a host. Furthermore, the methane sensors are connected to the monitoring host via an all-optical method, achieving non-source and long-range detection of methane. To assess the performance of the methane gas sensor, experiments were conducted to evaluate its detection range, response time, and stability. The results indicated that the average detection error was approximately 1.84% across the full range, and the response time did not exceed 10 s. The minimum detection limit of the sensor, as determined by the 1σ criteria, was obtained as 58.42 ppm. Additionally, the concentrations of methane gas measured at varying distances (1 km, 2 km, 5 km) were found to be essentially consistent over an extended period. These results suggest that the development of this non-source optical fiber sensor holds significant potential for providing a method for mine environment, multi-point online methane gas detection.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sensors (Basel) Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sensors (Basel) Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza