Feasibility of keeping Mars warm with nanoparticles.
Sci Adv
; 10(32): eadn4650, 2024 Aug 09.
Article
en En
| MEDLINE
| ID: mdl-39110809
ABSTRACT
One-third of Mars' surface has shallow-buried H2O, but it is currently too cold for use by life. Proposals to warm Mars using greenhouse gases require a large mass of ingredients that are rare on Mars' surface. However, we show here that artificial aerosols made from materials that are readily available at Mars-for example, conductive nanorods that are ~9 micrometers long-could warm Mars >5 × 103 time smore effectively than the best gases. Such nanoparticles forward-scatter sunlight and efficiently block upwelling thermal infrared. Like the natural dust of Mars, they are swept high into Mars' atmosphere, allowing delivery from the near-surface. For a 10-year particle lifetime, two climate models indicate that sustained release at 30 liters per second would globally warm Mars by â³30 kelvin and start to melt the ice. Therefore, if nanoparticles can be made at scale on (or delivered to) Mars, then the barrier to warming of Mars appears to be less high than previously thought.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Sci Adv
Año:
2024
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos