Your browser doesn't support javascript.
loading
Genetic variation in a heat shock transcription factor modulates cold tolerance in maize.
Gao, Lei; Pan, Lingling; Shi, Yiting; Zeng, Rong; Li, Minze; Li, Zhuoyang; Zhang, Xuan; Zhao, Xiaoming; Gong, Xinru; Huang, Wei; Yang, Xiaohong; Lai, Jinsheng; Zuo, Jianru; Gong, Zhizhong; Wang, Xiqing; Jin, Weiwei; Dong, Zhaobin; Yang, Shuhua.
Afiliación
  • Gao L; State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China.
  • Pan L; State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China.
  • Shi Y; State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China. Electronic address: shiyiting@cau.edu.cn.
  • Zeng R; State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China.
  • Li M; State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China.
  • Li Z; State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China.
  • Zhang X; State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China.
  • Zhao X; State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China.
  • Gong X; State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
  • Huang W; State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China.
  • Yang X; State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China.
  • Lai J; State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China.
  • Zuo J; State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
  • Gong Z; State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China.
  • Wang X; State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China.
  • Jin W; State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China.
  • Dong Z; State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China. Electronic address: zbdong@cau.edu.cn.
  • Yang S; State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China. Electronic address: yangshuhua@cau.edu.cn.
Mol Plant ; 17(9): 1423-1438, 2024 Sep 02.
Article en En | MEDLINE | ID: mdl-39095994
ABSTRACT
Understanding how maize (Zea mays) responds to cold stress is crucial for facilitating breeding programs of cold-tolerant varieties. Despite extensive utilization of the genome-wide association study (GWAS) approach for exploring favorable natural alleles associated with maize cold tolerance, few studies have successfully identified candidate genes that contribute to maize cold tolerance. In this study, we used a diverse panel of inbred maize lines collected from different germplasm sources to perform a GWAS on variations in the relative injured area of maize true leaves during cold stress-a trait very closely correlated with maize cold tolerance. We identified HSF21, which encodes a B-class heat shock transcription factor (HSF) that positively regulates cold tolerance at both the seedling and germination stages. Natural variations in the promoter of the cold-tolerant HSF21Hap1 allele led to increased HSF21 expression under cold stress by inhibiting binding of the basic leucine zipper bZIP68 transcription factor, a negative regulator of cold tolerance. By integrating transcriptome deep sequencing, DNA affinity purification sequencing, and targeted lipidomic analysis, we revealed the function of HSF21 in regulating lipid metabolism homeostasis to modulate cold tolerance in maize. In addition, we found that HSF21 confers maize cold tolerance without incurring yield penalties. Collectively, this study establishes HSF21 as a key regulator that enhances cold tolerance in maize, providing valuable genetic resources for breeding of cold-tolerant maize varieties.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Plantas / Variación Genética / Regulación de la Expresión Génica de las Plantas / Zea mays / Factores de Transcripción del Choque Térmico Idioma: En Revista: Mol Plant Asunto de la revista: BIOLOGIA MOLECULAR / BOTANICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Plantas / Variación Genética / Regulación de la Expresión Génica de las Plantas / Zea mays / Factores de Transcripción del Choque Térmico Idioma: En Revista: Mol Plant Asunto de la revista: BIOLOGIA MOLECULAR / BOTANICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido