Your browser doesn't support javascript.
loading
Influence of Hardwood Lignin Blending on the Electrical and Mechanical Properties of Cellulose Based Carbon Fibers.
Rajendra Babu Kalai Arasi, Azega; Bengtsson, Jenny; Haque, Mazharul; Theliander, Hans; Enoksson, Peter; Lundgren, Per.
Afiliación
  • Rajendra Babu Kalai Arasi A; Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Göteborg, Sweden.
  • Bengtsson J; Wallenberg Wood Science Center, 100 44 Stockholm, Sweden.
  • Haque M; RISE Research Institutes of Sweden, 431 53 Mölndal, Sweden.
  • Theliander H; Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Göteborg, Sweden.
  • Enoksson P; Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden.
  • Lundgren P; Wallenberg Wood Science Center, 100 44 Stockholm, Sweden.
ACS Sustain Chem Eng ; 12(30): 11206-11217, 2024 Jul 29.
Article en En | MEDLINE | ID: mdl-39091924
ABSTRACT
Carbon fibers (CFs) are fabricated by blending hardwood kraft lignin (HKL) and cellulose. Various compositions of HKL and cellulose in blended solutions are air-gap spun in 1-ethyl-3-methylimidazolium acetate (EMIM OAc), resulting in the production of virtually bead-free quality fibers. The synthesized HKL-cellulose fibers are thermostabilized and carbonized to achieve CFs, and consequently their electrical and mechanical properties are evaluated. Remarkably, fibers with the highest lignin content (65%) exhibited an electrical conductivity of approximately 42 S/cm, surpassing that of cellulose (approximately 15 S/cm). Moreover, the same fibers demonstrated significantly improved tensile strength (∼312 MPa), showcasing a 5-fold increase compared to pure cellulose while maintaining lower stiffness. Comprehensive analyses, including Auger electron spectroscopy and wide-angle X-ray scattering, show a heterogeneous skin-core morphology in the fibers revealing a higher degree of preferred orientation of carbon components in the skin compared to the core. The incorporation of lignin in CFs leads to increased graphitization, enhanced tensile strength, and a unique skin-core structure, where the skin's graphitized cellulose and lignin contribute stiffness, while the predominantly lignin-rich core enhances carbon content, electrical conductivity, and strength.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Sustain Chem Eng Año: 2024 Tipo del documento: Article País de afiliación: Suecia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Sustain Chem Eng Año: 2024 Tipo del documento: Article País de afiliación: Suecia Pais de publicación: Estados Unidos