Your browser doesn't support javascript.
loading
Quality-diversity based semi-autonomous teleoperation using reinforcement learning.
Park, Sangbeom; Yoon, Taerim; Lee, Joonhyung; Park, Sunghyun; Choi, Sungjoon.
Afiliación
  • Park S; Department of Artificial Intelligence, Korea University, Seoul, 02841, South Korea.
  • Yoon T; Department of Artificial Intelligence, Korea University, Seoul, 02841, South Korea.
  • Lee J; Department of Artificial Intelligence, Korea University, Seoul, 02841, South Korea.
  • Park S; Department of Artificial Intelligence, Korea University, Seoul, 02841, South Korea.
  • Choi S; Department of Artificial Intelligence, Korea University, Seoul, 02841, South Korea. Electronic address: sungjoon-choi@korea.ac.kr.
Neural Netw ; 179: 106543, 2024 Nov.
Article en En | MEDLINE | ID: mdl-39089158
ABSTRACT
Recent successes in robot learning have significantly enhanced autonomous systems across a wide range of tasks. However, they are prone to generate similar or the same solutions, limiting the controllability of the robot to behave according to user intentions. These limited robot behaviors may lead to collisions and potential harm to humans. To resolve these limitations, we introduce a semi-autonomous teleoperation framework that enables users to operate a robot by selecting a high-level command, referred to as option. Our approach aims to provide effective and diverse options by a learned policy, thereby enhancing the efficiency of the proposed framework. In this work, we propose a quality-diversity (QD) based sampling method that simultaneously optimizes both the quality and diversity of options using reinforcement learning (RL). Additionally, we present a mixture of latent variable models to learn multiple policy distributions defined as options. In experiments, we show that the proposed method achieves superior performance in terms of the success rate and diversity of the options in simulation environments. We further demonstrate that our method outperforms manual keyboard control for time duration over cluttered real-world environments.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Refuerzo en Psicología / Robótica Límite: Humans Idioma: En Revista: Neural Netw Asunto de la revista: NEUROLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Corea del Sur Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Refuerzo en Psicología / Robótica Límite: Humans Idioma: En Revista: Neural Netw Asunto de la revista: NEUROLOGIA Año: 2024 Tipo del documento: Article País de afiliación: Corea del Sur Pais de publicación: Estados Unidos