Your browser doesn't support javascript.
loading
Identification and detection of the V1848I indoxacarb resistance mutation in the beet armyworm, Spodoptera exigua.
Zhang, Xianxia; Zhang, Ruiming; Yu, Mengqi; Liu, Rui; Liu, Naijing; Teng, Haiyuan; Pei, Yakun; Hu, Zhaonong; Zuo, Yayun.
Afiliación
  • Zhang X; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management
  • Zhang R; Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling 712100, Shaanxi, China; Key L
  • Yu M; Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling 712100, Shaanxi, China; Key L
  • Liu R; Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling 712100, Shaanxi, China; Key L
  • Liu N; Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling 712100, Shaanxi, China.
  • Teng H; Institute of Eco-Environmental and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
  • Pei Y; Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling 712100, Shaanxi, China; Key L
  • Hu Z; Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection. Northwest A&F University, Yangling 712100, Shaanxi, China; Key L
  • Zuo Y; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory for Botanical Pesticide R&D of Shaanxi Province, Yangling 712100, Shaanxi, China. Electronic address: yayunzuo@nwafu.edu.cn.
Pestic Biochem Physiol ; 203: 105991, 2024 Aug.
Article en En | MEDLINE | ID: mdl-39084768
ABSTRACT
Indoxacarb is a pivotal insecticide used worldwide to manage Spodoptera exigua, a devastating agricultural pest. This active compound plays a crucial role in resistance management strategies due to its distinctive mode of action. A field population of S. exigua (SH23) from Shanghai, China, exhibited significantly reduced susceptibility to indoxacarb, with a resistance ratio of 113.84-fold in biological assays. Following two rounds of laboratory screening with indoxacarb, the resistance of the new strain (SH23-S2) escalated steeply to 876.15-fold. Genetic analyses of both the SH23 and SH23-S2 strains demonstrated autosomal inheritance and incompletely dominant resistance patterns. Synergist assays indicated a minor role of detoxification enzymes (glutathione s-transferases and cytochrome P450) of SH23-S2 strain in this resistance, implicating target-site resistance as the primary mechanism. To explore the impact of target-site resistance, segment 1-6 of domain IV (IVS1-6) of the sodium channel in S. exigua was cloned, and the sequences from susceptible and indoxacarb-resistant S. exigua were compared. The V1848I mutation, linked to indoxacarb resistance in Plutella xylostella, Tuta absoluta and Liriomyza trifolii, was identified and strongly associated with the indoxacarb-resistant phenotype in the S. exigua SH23-S2 strain, whereas the F1845Y mutation was not detected. Furthermore, a molecular test for the V1848I mutation in field populations was created using an allele-specific PCR (AS-PCR). The discovery of indoxacarb resistance mutation and the creation of diagnostic tool will enable the early detection of indoxacarb resistance, which will facilitate the implementation of targeted resistance management strategies, ultimately delaying the proliferation of resistance.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxazinas / Resistencia a los Insecticidas / Spodoptera / Insecticidas / Mutación Límite: Animals Idioma: En Revista: Pestic Biochem Physiol Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oxazinas / Resistencia a los Insecticidas / Spodoptera / Insecticidas / Mutación Límite: Animals Idioma: En Revista: Pestic Biochem Physiol Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos