Your browser doesn't support javascript.
loading
Synthesis of nitrogen-doped amorphous carbon nanotubes from novel cobalt-based MOF precursors for improving potassium-ion storage capability.
Yan, Chengzhan; Chao, Xin; Zhao, Huaping; Wang, Shun; Lei, Yong.
Afiliación
  • Yan C; Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano (ZIK), Technische Universität Ilmenau, Ilmenau 98693, Germany.
  • Chao X; Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
  • Zhao H; Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano (ZIK), Technische Universität Ilmenau, Ilmenau 98693, Germany.
  • Wang S; College of Chemistry and Materials Engineering, Key Laboratory of Leather of Zhejiang Province, Wenzhou University, Wenzhou 325035, Zhejiang, China; Institute of New Materials and Industrial Technology, Wenzhou University, Wenzhou 325035, Zhejiang, China. Electronic address: shunwang@wzu.edu.cn.
  • Lei Y; Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano (ZIK), Technische Universität Ilmenau, Ilmenau 98693, Germany. Electronic address: yong.lei@tu-ilmenau.de.
J Colloid Interface Sci ; 677(Pt A): 35-44, 2025 Jan.
Article en En | MEDLINE | ID: mdl-39079214
ABSTRACT
Amorphous carbon materials with sophisticated morphologies, variable carbon layer structures, abundant defects, and tunable porosities are favorable as anodes for potassium-ion batteries (PIBs). Synthesizing amorphous carbon materials typically involves the pyrolysis of carbonaceous precursors. Nonetheless, there is still a lack of studies focused on achieving multifaceted structural optimizations of amorphous carbon through precursor formulation. Herein, nitrogen-doped amorphous carbon nanotubes (NACNTs) are derived from a novel composite precursor of cobalt-based metal-organic framework (CMOF) and graphitic carbon nitride (g-CN). The addition of g-CN in the precursor optimizes the structure of amorphous carbon such as morphology, interlayer spacing, nitrogen doping, and porosity. As a result, NACNTs demonstrate significantly improved electrochemical performance. The specific capacities of NACNTs after cycling at current densities of 100 mA/g and 1000 mA/g increased by 194 % and 230 %, reaching 346.6 mAh/g and 211.8 mAh/g, respectively. Furthermore, the NACNTs anode is matched with an organic cathode for full-cell evaluation. The full-cell attains a high specific capacity of 106 mAh/gcathode at a current density of 100 mA/g, retaining 90.5 % of the specific capacity of the cathode half-cell. This study provides a valuable reference for multifaceted structural optimization of amorphous carbon to improve potassium-ion storage capability.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2025 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Colloid Interface Sci Año: 2025 Tipo del documento: Article País de afiliación: Alemania Pais de publicación: Estados Unidos