Your browser doesn't support javascript.
loading
A sustainable zein-based adhesive for various substrates with improved adhesion and stability.
Ji, Maocheng; Li, Fangyi; Li, Jianyong; Zhang, Chuanwei; Peng, Sixian; Li, Jianfeng; Man, Jia.
Afiliación
  • Ji M; Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
  • Li F; Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China. Electroni
  • Li J; Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China. Electroni
  • Zhang C; College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China.
  • Peng S; Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
  • Li J; Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China.
  • Man J; Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University, Jinan 250061, China; National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China. Electroni
Int J Biol Macromol ; 277(Pt 3): 134234, 2024 Oct.
Article en En | MEDLINE | ID: mdl-39074700
ABSTRACT
Biomass-based adhesives are gaining attention as environmentally friendly alternatives to toxic petroleum-based adhesives. However, biomass-based adhesives exhibit poor adhesive properties and are highly susceptible to failure in humid environments. In this study, a zein-based adhesive with high adhesive strength and good water resistance was prepared by optimizing the solvent composition and adding tannic acid. Adding 10 wt% acetic acid to an aqueous ethanol solvent increased the shear strength by 45.4 % to 3.09 MPa. Moreover, the addition of 6 wt% tannic acid improved the shear strength of the zein-based adhesive in humid environments from 0.63 to 1.58 MPa. The tannic acid-reinforced zein-based adhesive exhibited good adhesive strength in both humid and dry environments, which was maintained for 30 days on glass, and could be applied to a wide range of substrates. Moreover, the adhesive showed an antioxidant activity >94 %, excellent thermal stability, biocompatibility, and antibacterial effect. Therefore, this adhesive has great application prospects in medical, packaging, and other fields.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Taninos / Zeína / Adhesivos Límite: Animals Idioma: En Revista: Int J Biol Macromol Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Taninos / Zeína / Adhesivos Límite: Animals Idioma: En Revista: Int J Biol Macromol Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Países Bajos