Highly selective regulation of non-radical and radical mechanisms by Co cubic assembly catalysts for peroxymonosulfate activation.
J Colloid Interface Sci
; 676: 1044-1054, 2024 Dec 15.
Article
en En
| MEDLINE
| ID: mdl-39074407
ABSTRACT
Peroxymonosulfate (PMS) activation on efficient catalysts is a promising strategy to produce sulfate radical (SO4-) and singlet oxygen (1O2) for the degradation of refractory organic pollutants. It is a great challenge to selectively generate these two reactive oxygen species, and the regulation mechanism from non-radical to radical pathway and vice versa is not well established. Here, we report a strategy to regulate the activation mechanism of PMS for the selective generation of SO4- and 1O2 with 100 % efficiency by sulfur-doped cobalt cubic assembly catalysts that was derived from the Co-Co Prussian blue analog precursor. This catalyst showed superior catalytic performance in activating PMS with normalized reaction rate increased by 87 times that of the commercial Co3O4 nanoparticles and had much lower activation energy barrier for the degradation of organic pollutant (e.g., p-chlorophenol) (18.32 kJâ
mol-1). Experimental and theoretical calculation results revealed that S doping can regulate the electronic structure of Co active centers, which alters the direction of electron transfer between catalyst and PMS. This catalyst showed a strong tolerance to common organic compounds and anions in water, wide environmental applicability, and performed well in different real-water systems. This study provides new opportunities for the development of metal catalyst with metal-organic frameworks structure and good self-regeneration ability geared specifically towards PMS-based advanced oxidation processes applied for water remediation.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
J Colloid Interface Sci
Año:
2024
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Estados Unidos