Your browser doesn't support javascript.
loading
Photonic crystal-assisted sub-bandgap photocatalysis via triplet-triplet annihilation upconversion for the degradation of environmental organic pollutants.
Cho, Haein; Seo, Sung Eun; Kwon, Oh Seok; Kim, Hyoung-Il.
Afiliación
  • Cho H; Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Koreai.
  • Seo SE; Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Koreai; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.
  • Kwon OS; SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Nano Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
  • Kim HI; Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Koreai; Future City Open Innovation Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea. Electronic address: hi.kim@yonsei.ac.kr.
J Hazard Mater ; 477: 135208, 2024 Sep 15.
Article en En | MEDLINE | ID: mdl-39067295
ABSTRACT
This study explores novel approaches to enhance photocatalysis efficiency by introducing a photonic crystal (PC)-enhanced, multi-layered sub-bandgap photocatalytic reactor. The design aims to effectively utilize sub-bandgap photons that might otherwise go unused. The device consists of three types of layers (1) two polymeric triplet-triplet annihilation upconversion (TTA-UC) layers converting low-energy green photons (λEx = 532 nm, 2.33 eV) to high-energy blue photons (λEm = 425 nm, 2.92 eV), (2) a platinum-decorated WO3 layer (Eg = 2.8 eV) serving as a visible-light photocatalyst, and (3) a PC layer optimizing both TTA-UC and photocatalysis. The integration of the PC layer resulted in a 1.9-fold increase in UC emission and a 7.9-fold enhancement in hydroxyl radical (•OH) generation, achieved under low-intensity sub-bandgap irradiation (17.6 mW cm-2). Consequently, the combined layered structure of TTA/Pt-WO3/TTA/PC achieved a remarkable 38.8-fold improvement in •OH production, leading to outstanding degradation capability for various organic pollutants (e.g., 4-chlorophenol, bisphenol A, and methylene blue). This multi-layered sub-bandgap photocatalytic structure, which uniquely combines TTA-UC and PC layers, offers valuable insights into designing efficient photocatalytic systems for future solar-driven environmental remediation.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos