Your browser doesn't support javascript.
loading
Cyanobacterial Bloom Formation by Enhanced Ecological Adaptability and Competitive Advantage of Microcystis-Non-Negligible Role of Quorum Sensing.
Zhang, Ziqing; Li, Jieming.
Afiliación
  • Zhang Z; College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
  • Li J; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China.
Microorganisms ; 12(7)2024 Jul 20.
Article en En | MEDLINE | ID: mdl-39065257
ABSTRACT
Microcystis-dominated cyanobacterial blooms (MCBs) frequently occur in freshwaters worldwide due to massive Microcystis colony formation and severely threaten human and ecosystem health. Quorum sensing (QS) is a direct cause of Microcystis colony formation that drives MCBs outbreak by regulating Microcystis population characteristics and behaviors. Many novel findings regarding the fundamental knowledge of the Microcystis QS phenomenon and the signaling molecules have been documented. However, little effort has been devoted to comprehensively summarizing and discussing the research progress and exploration directions of QS signaling molecules-mediated QS system in Microcystis. This review summarizes the action process of N-acyl homoserine lactones (AHLs) as major signaling molecules in Microcystis and discusses the detailed roles of AHL-mediated QS system in cellular morphology, physiological adaptability, and cell aggregation for colony formation to strengthen ecological adaptability and competitive advantage of Microcystis. The research progress on QS mechanisms in Microcystis are also summarized. Compared to other QS systems, the LuxI/LuxR-type QS system is more likely to be found in Microcystis. Also, we introduce quorum quenching (QQ), a QS-blocking process in Microcystis, to emphasize its potential as QS inhibitors in MCBs control. Finally, in response to the research deficiencies and gaps in Microcystis QS, we propose several future research directions in this field. This review deepens the understanding on Microcystis QS knowledge and provide theoretical guidance in developing strategies to monitor, control, and harness MCBs.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Microorganisms Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Microorganisms Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza