Your browser doesn't support javascript.
loading
Probability Prediction of Curing Process-Induced Deformation for V-Shape Composite Structures Based on FEM Method and Data Mining.
Feng, Guangshuo; Liu, Bo.
Afiliación
  • Feng G; School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China.
  • Liu B; School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China.
Materials (Basel) ; 17(14)2024 Jul 18.
Article en En | MEDLINE | ID: mdl-39063837
ABSTRACT
Continuous fiber-reinforced composites are increasingly used in industry for their superior specific modulus and strength. The curing process-induced deformation (PID) has been a critical problem during manufacturing, which always exhibits dispersed values even if the curing process curve and structural parameters remain consistent. This work conducted probability prediction of PID for V-shape composite structures based on the FEM method and data mining. A sequential coupling thermal-chemical-mechanical coupling FE model is established in ABAQUS. The prediction accuracy of the included angle between two sides is verified by the experimental results. Material parameter uncertainties are considered for V-shape structures with different radii and thicknesses. Based on the dataset from the FE model, a decision tree is established and trained to analyze the sensitivity and to predict the probability distribution of PID. The results show that PID increases with the coefficients of thermal expansion in the in-plane perpendicular fiber direction and out-of-plane normal direction. The data-mining method is accurate enough for the PID prediction, and its efficiency provides an additional calculation option in engineering applications.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Suiza