Your browser doesn't support javascript.
loading
Electrocatalytically active and charged natural chalcopyrite for nitrate-contaminated wastewater purification extended to energy storage Zn-NO3- battery.
Lu, Jun; Lv, Shaoyan; Park, Ho Seok; Chen, Quanyuan.
Afiliación
  • Lu J; School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, the Republic of Korea. Electronic address: junexian94@163.com.
  • Lv S; School of Environment Science and Engineering, Donghua University, Shanghai 201620, PR China.
  • Park HS; SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon-si, Gyeonggi-do, the Republic of Korea; SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon-si, Gyeonggi-do, the Republic of Korea; Department of Health Sciences and Technology, Sam
  • Chen Q; School of Environment Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institution of Pollution Control and Ecological Security, Shanghai 200092, PR China; State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Dongh
J Hazard Mater ; 477: 135287, 2024 Sep 15.
Article en En | MEDLINE | ID: mdl-39053059
ABSTRACT
Charged natural chalcopyrite (CuFeS2, Ncpy) was developed for a three-dimensional electrochemical nitrate reduction (3D ENO3-RR) system with carbon fiber cloth cathode and Ti/IrO2 anode and Zn-NO3- battery. The 3D ENO3-RR system with Ncpy particle electrodes (PEs) possessed superior nitrate removal of 95.6 % and N2 selectivity of 76 % with excellent reusability under a broad pH range of 2-13 involving heterogeneous and homogeneous radical mechanisms. The Zn-NO3- battery with Ncpy cathode delivered an open-circuit voltage of 1.03 V and a cycling stability over 210 h. It was found that Ncpy PEs functioned through self-oxidation, surface dynamic reconstruction (Cu1.02Fe1.0S1.72O1.66 to Cu0.61Fe1.0S0.27O2.98), intrinsic micro-electric field (CuI, S2- anodic and FeIII cathodic poles), and reactive species (•OH, SO4•-, 1O2, •O2- and •H) generation. Computational analyses reveal that CuFeS2(112) surface with the lowest surface energy preferentially exposes Fe and Cu atoms. Cu site is beneficial for reducing NO3- to NO2-, Fe and Fe-Cu dual sites are conducive to N2 selectivity, lowering the overall reaction barriers. It paves the way for selective NO3- reduction in wastewater treatment and can be further extended to energy storage devices by utilizing low-cost Ncpy.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: J Hazard Mater Asunto de la revista: SAUDE AMBIENTAL Año: 2024 Tipo del documento: Article Pais de publicación: Países Bajos