Your browser doesn't support javascript.
loading
Engineered Regenerative Isolated Peripheral Nerve Interface for Targeted Reinnervation.
Kwon, Jinju; Eom, Seongsu; Kong, Jeong Sik; Cho, Dong-Woo; Kim, Dong Sung; Kim, Junesun.
Afiliación
  • Kwon J; Department of Health Science, Graduate School, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
  • Eom S; Transdisciplinary Major in Learning Health Systems, Department of Healthcare Sciences, Graduate School, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
  • Kong JS; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
  • Cho DW; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
  • Kim DS; POSTECH-Catholic Biomedical Engineering Institute, POSTECH, Pohang, Gyeongbuk, 37673, Republic of Korea.
  • Kim J; Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
Adv Mater ; : e2406652, 2024 Jul 25.
Article en En | MEDLINE | ID: mdl-39051516
ABSTRACT
A regenerative peripheral nerve interface (RPNI) offers a therapeutic solution for nerve injury through reconstruction of the target muscle. However, implanting a transected peripheral nerve into an autologous skeletal muscle graft in RPNI causes donor-site morbidity, highlighting the need for tissue-engineered skeletal muscle constructs. Here, an engineered regenerative isolated peripheral nerve interface (eRIPEN) is developed using 3D skeletal cell printing combined with direct electrospinning to create a nanofiber membrane envelop for host nerve implantation. In this in vivo study, after over 8 months of RPNI surgery, the eRIPEN exhibits a minimum Feret diameter of 15-20 µm with a cross-sectional area of 100-500 µm2, representing the largest distribution of myofibers. Furthermore, neuromuscular junction formation and muscle contraction with a force of ≈28 N are observed. Notably, the decreased hypersensitivity to mechanical/thermal stimuli and an improved tibial functional index from -77 to -56 are found in the eRIPEN group. The present novel concept of eRIPEN paves the way for the utilization and application of tissue-engineered constructs in RPNI, ultimately realizing neuroprosthesis control through synaptic connections.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article Pais de publicación: Alemania