Your browser doesn't support javascript.
loading
Tuning the Size of TiO2-Supported Co Nanoparticle Fischer-Tropsch Catalysts Using Mn Additions.
Lindley, Matthew; Stishenko, Pavel; Crawley, James W M; Tinkamanyire, Fred; Smith, Matthew; Paterson, James; Peacock, Mark; Xu, Zhuoran; Hardacre, Christopher; Walton, Alex S; Logsdail, Andrew J; Haigh, Sarah J.
Afiliación
  • Lindley M; Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
  • Stishenko P; Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K.
  • Crawley JWM; Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K.
  • Tinkamanyire F; Department of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
  • Smith M; Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
  • Paterson J; bp, Applied Sciences, Innovation & Engineering, Saltend, Hull HU12 8DS, U.K.
  • Peacock M; bp, Applied Sciences, Innovation & Engineering, Saltend, Hull HU12 8DS, U.K.
  • Xu Z; bp, Applied Sciences, Innovation & Engineering, Chicago, Illinois 60606, United States.
  • Hardacre C; Department of Chemical Engineering and Analytical Science, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
  • Walton AS; Department of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
  • Logsdail AJ; Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K.
  • Haigh SJ; Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
ACS Catal ; 14(14): 10648-10657, 2024 Jul 19.
Article en En | MEDLINE | ID: mdl-39050900
ABSTRACT
Modifying traditional Co/TiO2-based Fischer-Tropsch (FT) catalysts with Mn promoters induces a selectivity shift from long-chain paraffins toward commercially desirable alcohols and olefins. In this work, we use in situ gas cell scanning transmission electron microscopy (STEM) with energy-dispersive X-ray spectroscopy (EDS) elemental mapping, and near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) to demonstrate how the elemental dispersion and chemical structure of the as-calcined materials evolve during the H2 activation heat treatment required for industrial CoMn/TiO2 FT catalysts. We find that Mn additions reduce both the mean Co particle diameter and the size distribution but that the Mn remains dispersed on the support after the activation step. Density functional theory calculations show that the slower surface diffusion of Mn is likely due to the lower number of energetically accessible sites for the Mn on the titania support and that favorable Co-Mn interactions likely cause greater dispersion and slower sintering of Co in the Mn-promoted catalyst. These mechanistic insights into how the introduction of Mn tunes the Co nanoparticle size can be applied to inform the design of future-supported nanoparticle catalysts for FT and other heterogeneous catalytic processes.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Catal Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Catal Año: 2024 Tipo del documento: Article País de afiliación: Reino Unido Pais de publicación: Estados Unidos