Your browser doesn't support javascript.
loading
Broken-gap energy alignment in two-dimensional van der Waals heterostructures for multifunctional tunnel diodes.
Taylor, Patrick D; Tawfik, Sherif Abdulkader; Spencer, Michelle J S.
Afiliación
  • Taylor PD; School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia. michelle.spencer@rmit.edu.au.
  • Tawfik SA; Applied Artificial Intelligence Institute, Deakin University, Victoria, Australia.
  • Spencer MJS; School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria, 3001, Australia. michelle.spencer@rmit.edu.au.
Phys Chem Chem Phys ; 26(31): 20993-21000, 2024 Aug 07.
Article en En | MEDLINE | ID: mdl-39049664
ABSTRACT
Two-dimensional (2D) materials are promising platforms for future nanoelectronic technologies as they provide the building blocks for atomically thin devices, including switches, amplifiers, and oscillators. When 2D materials are layered on top of each other, forming van der Waals heterostructures (vdWHs), they can provide unique properties not possessed by the individual layers. Here we consider the vdWHs HfS2/MoTe2, HfS2/WTe2, 1T-HfS2/WTe2, TiS2/WSe2, TiS2/ZnO, and TiSe2/WTe2 as potential Esaki (or tunnel) diodes that can be incorporated into electronic devices. In this work, the strongly constrained and appropriately normed (SCAN) meta-generalised-gradient approximation (meta-GGA) functional is employed for the structural properties, whereas the Heyd-Scuseria-Ernzerhof (HSE) functional is used for the electronic properties. We establish that the band alignments in these systems form broken-band heterojunctions. We show that the electronic properties of the systems can be effectively modulated by applying lateral strain or an external electric field. Importantly, we demonstrate that the band gap of the vdWHs can be widened by up to 0.65 eV by applying an electric force field of -1 to +1 eV Å-1. This work demonstrates a set of 6 vdWHs with properties suitable for application as 2D Esaki tunnel diodes, 4 of which could be applied as multifunctional devices. These materials not only offer new device properties, but their small dimensions allow for the creation of ultrathin devices.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Australia Pais de publicación: Reino Unido