Your browser doesn't support javascript.
loading
D-Peptide cell culture scaffolds with enhanced antibacterial and controllable release properties.
Tian, Yu; Hou, Yangqian; Tian, Jiakun; Zheng, Jin; Xiao, Zeyu; Hu, Jun; Zhang, Yi.
Afiliación
  • Tian Y; Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. zhangyi@sinap.ac.cn.
  • Hou Y; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
  • Tian J; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Zheng J; Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. zhangyi@sinap.ac.cn.
  • Xiao Z; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
  • Hu J; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Zhang Y; Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China. zhangyi@sinap.ac.cn.
J Mater Chem B ; 12(33): 8122-8132, 2024 Aug 22.
Article en En | MEDLINE | ID: mdl-39044470
ABSTRACT
The development of peptide-based hydrogels characterized by both high biostability and potent antimicrobial activity, aimed at combating multidrug-resistant bacterial infections and providing scaffolds for cell cultures, continues to pose a significant challenge. The susceptibility of antimicrobial peptides (AMPs) to degradation by cations, serum, and proteases restricted their applications in clinical environments. In this study, we designed a peptide sequence (termed D-IK1) entirely consisting of D-amino acids, an enantiomer of a previously reported AMP IK1. Our results demonstrated remarkably improved antibacterial and anticancer activities of D-IK1 as compared to IK1. D-IK1 self-assembled into hydrogels that effectively inhibited bacterial and cancer cell growth by the controlled and sustained release of D-IK1. Importantly, D-IK1 was extremely stable in salt solutions and resisted serum and protease degradation. In addition, the D-IK1 hydrogel fostered cell adhesion and proliferation, proving its viability as a 3D scaffold for cell culture applications. Our research presents a versatile, highly stable antibacterial hydrogel scaffold with potential widespread applications in cell culture, wound healing, and the eradication of multidrug-resistant bacterial infections.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Pruebas de Sensibilidad Microbiana / Antibacterianos Límite: Humans Idioma: En Revista: J Mater Chem B Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Pruebas de Sensibilidad Microbiana / Antibacterianos Límite: Humans Idioma: En Revista: J Mater Chem B Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Reino Unido