Your browser doesn't support javascript.
loading
Heterodyne High-Harmonic Electrostatic Force Microscopy with Improved Spatial Resolution for Nanoscale Identification of Metallic/Semiconducting Carbon Nanotubes.
Xu, Kunqi; Xie, Yufeng; Ma, Saiqun; Liang, Qi; Shi, Zhiwen.
Afiliación
  • Xu K; Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
  • Xie Y; Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China.
  • Ma S; Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
  • Liang Q; Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China.
  • Shi Z; Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
ACS Appl Mater Interfaces ; 16(30): 39867-39875, 2024 Jul 31.
Article en En | MEDLINE | ID: mdl-39039958
ABSTRACT
There are two main types of carbon nanotubes (CNTs) metallic and semiconducting. Naturally grown CNTs are randomly distributed, posing challenges in distinguishing between the two types. Here, a novel approach for nanoscale high-resolution imaging and identification of CNTs was introduced by incorporating the heterodyne technique into high-harmonic electrostatic force microscopy (HH-EFM) on an atomic force microscopy (AFM) platform. In the developed heterodyne HH-EFM, a more localized high-order gradient of tip-sample nonlinear interaction force is used as signal channels, resulting in an improved spatial resolution, compared to the conventional HH-EFM. Furthermore, the heterodyne HH-EFM also has the capability to visualize material carrier density and assess qualitative carrier transport performance. Our work not only presents a new approach to identifying/exploring electrical properties of low-dimensional nanomaterials but also provides a solution for optimizing resolution in long-range interaction-based functional AFM technologies.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2024 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos