Your browser doesn't support javascript.
loading
OsO2 as the Contrast-Generating Chemical Species of Osmium-Stained Biological Tissues in Electron Microscopy.
Li, Ruiyu; Wildenberg, Gregg; Boergens, Kevin; Yang, Yingjie; Weber, Kassandra; Rieger, Janek; Arcidiacono, Ashley; Klie, Robert; Kasthuri, Narayanan; King, Sarah B.
Afiliación
  • Li R; Department of Chemistry, University of Chicago, Chicago, IL, USA.
  • Wildenberg G; James Franck Institute, University of Chicago, Chicago, IL, USA.
  • Boergens K; Department of Neurobiology, The University of Chicago, Chicago, IL, USA.
  • Yang Y; Argonne National Laboratory, Biosciences Division, Lemont, IL, USA.
  • Weber K; Department of Physics, University of Illinois Chicago, Chicago, IL, USA.
  • Rieger J; Department of Physics, University of Illinois Chicago, Chicago, IL, USA.
  • Arcidiacono A; Department of Physics, University of Illinois Chicago, Chicago, IL, USA.
  • Klie R; James Franck Institute, University of Chicago, Chicago, IL, USA.
  • Kasthuri N; James Franck Institute, University of Chicago, Chicago, IL, USA.
  • King SB; Department of Physics, University of Illinois Chicago, Chicago, IL, USA.
Chembiochem ; 25(20): e202400311, 2024 Oct 16.
Article en En | MEDLINE | ID: mdl-39037826
ABSTRACT
Electron imaging of biological samples stained with heavy metals has enabled visualization of subcellular structures critical in chemical-, structural-, and neuro-biology. In particular, osmium tetroxide (OsO4) has been widely adopted for selective lipid imaging. Despite the ubiquity of its use, the osmium speciation in lipid membranes and the process for contrast generation in electron microscopy (EM) have continued to be open questions, limiting efforts to improve staining protocols and therefore high-resolution nanoscale imaging of biological samples. Following our recent success using photoemission electron microscopy (PEEM) to image mouse brain tissues with synaptic resolution, we have used PEEM to determine the nanoscale electronic structure of Os-stained biological samples. Os(IV), in the form of OsO2, generates nanoaggregates in lipid membranes, leading to a strong spatial variation in the electronic structure and electron density of states. OsO2 has a metallic electronic structure that drastically increases the electron density of states near the Fermi level. Depositing metallic OsO2 in lipid membranes allows for strongly enhanced EM signals and conductivity of biological materials. The identification of the chemical species and understanding of the membrane contrast mechanism of Os-stained biological specimens provides a new opportunity for the development of staining protocols for high-resolution, high-contrast EM imaging.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tetróxido de Osmio / Microscopía Electrónica Límite: Animals Idioma: En Revista: Chembiochem Asunto de la revista: BIOQUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Tetróxido de Osmio / Microscopía Electrónica Límite: Animals Idioma: En Revista: Chembiochem Asunto de la revista: BIOQUIMICA Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Alemania