Your browser doesn't support javascript.
loading
Integrated Pristine van der Waals Homojunctions for Self-Powered Image Sensors.
Hu, Yunxia; Wang, Jun; Tamtaji, Mohsen; Feng, Yuan; Tang, Tsz Wing; Amjadian, Mohammadreza; Kang, Ting; Xu, Mengyang; Shi, Xingyi; Zhao, Dongxu; Mi, Yongli; Luo, Zhengtang; An, Liang.
Afiliación
  • Hu Y; Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 100872, P. R. China.
  • Wang J; Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, P. R. China
  • Tamtaji M; Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, P. R. China
  • Feng Y; Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, P. R. China
  • Tang TW; Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 100872, P. R. China.
  • Amjadian M; Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, P. R. China
  • Kang T; Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, P. R. China
  • Xu M; Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, P. R. China
  • Shi X; Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, P. R. China
  • Zhao D; Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, 100872, P. R. China.
  • Mi Y; Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, 528000, P. R. China.
  • Luo Z; Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, P. R. China
  • An L; Department of Chemical and Biological Engineering, William Mong Institute of Nano Science and Technology, and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong, 999077, P. R. China
Adv Mater ; : e2404013, 2024 Jul 18.
Article en En | MEDLINE | ID: mdl-39030761
ABSTRACT
Van der Waals junctions hold significant potentials for various applications in multifunctional and low-power electronics and optoelectronics. The multistep device fabrication process usually introduces lattice mismatch and defects at the junction interfaces, which deteriorate device performance. Here the layer engineering synthesis of van der Waals homojunctions consisting of 2H-MoTe2 with asymmetric thickness to eliminate heterogenous interfaces and thus obtain clean interfaces is reported. Experimental results confirm that the homostructure nature gives rise to the formation of pristine van der Waals junctions, avoiding chemical disorders and defects. The ability to tune the energy bands of 2H-MoTe2 continuously through layer engineering enables the creation of adjustable built-in electric field at the homojunction boundaries, which leads to the achievement of self-powered photodetection based on the obtained 2H-MoTe2 films. Furthermore, the successful integration of 2H-MoTe2 homojunctions into an image sensor with 10 × 10 pixels, brings about zero-power consumption and near-infrared imaging functions. The pristine van der Waals homojunctions and effective integration strategies shed new insights into the development of large-scale application for two-dimensional materials in advanced electronics and optoelectronics.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article Pais de publicación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Adv Mater Asunto de la revista: BIOFISICA / QUIMICA Año: 2024 Tipo del documento: Article Pais de publicación: Alemania