Your browser doesn't support javascript.
loading
Substrate Characterization for Hydrolysis of Multiple Types of Aromatic Esters by Promiscuous Aminopeptidases.
Ning, Hang; Liu, Wen-Long; Li, Qing-Yun; Liu, You-Yan; Huang, Shi-Ting; Liu, Hai-Bo; Tang, Ai-Xing.
Afiliación
  • Ning H; School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China.
  • Liu WL; School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China.
  • Li QY; School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China.
  • Liu YY; Key Laboratory of Guangxi Biorefinery, Nanning 530003, People's Republic of China.
  • Huang ST; School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China.
  • Liu HB; Key Laboratory of Guangxi Biorefinery, Nanning 530003, People's Republic of China.
  • Tang AX; School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China.
J Agric Food Chem ; 72(30): 16867-16876, 2024 Jul 31.
Article en En | MEDLINE | ID: mdl-39021280
ABSTRACT
Synthetic aromatic esters, widely employed in agriculture, food, and chemical industries, have become emerging environmental pollutants due to their strong hydrophobicity and poor bioavailability. This study attempted to address this issue by extracellularly expressing the promiscuous aminopeptidase (Aps) from Pseudomonas aeruginosa GF31 in B. subtilis, achieving an impressive enzyme activity of 13.7 U/mg. Notably, we have demonstrated, for the first time, the Aps-mediated degradation of diverse aromatic esters, including but not limited to pyrethroids, phthalates, and parabens. A biochemical characterization of Aps reveals its esterase properties and a broader spectrum of substrate profiles. The degradation rates of p-nitrobenzene esters (p-NB) with different side chain structures vary under the action of Aps, showing a preference for substrates with relatively longer alkyl side chains. The structure-dependent degradability aligns well with the binding energies between Aps and p-NB. Molecular docking and enzyme-substrate interaction elucidate that hydrogen bonding, hydrophobic interactions, and π-π stacking collectively stabilize the enzyme-substrate conformation, promoting substrate hydrolysis. These findings provide new insights into the enzymatic degradation of aromatic ester pollutants, laying a foundation for the further development and modification of promiscuous enzymes.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Pseudomonas aeruginosa / Proteínas Bacterianas / Ésteres / Simulación del Acoplamiento Molecular / Aminopeptidasas Idioma: En Revista: J Agric Food Chem Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Pseudomonas aeruginosa / Proteínas Bacterianas / Ésteres / Simulación del Acoplamiento Molecular / Aminopeptidasas Idioma: En Revista: J Agric Food Chem Año: 2024 Tipo del documento: Article Pais de publicación: Estados Unidos