Your browser doesn't support javascript.
loading
Variable-stiffness prosthesis improves biomechanics of walking across speeds compared to a passive device.
Rogers-Bradley, Emily; Yeon, Seong Ho; Landis, Christian; Lee, Duncan R C; Herr, Hugh M.
Afiliación
  • Rogers-Bradley E; K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, 02139, USA.
  • Yeon SH; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, 02139, USA.
  • Landis C; Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, T2N 1N4, Canada.
  • Lee DRC; K. Lisa Yang Center for Bionics, Massachusetts Institute of Technology, Cambridge, 02139, USA.
  • Herr HM; Media Lab, Massachusetts Institute of Technology, Cambridge, 02142, USA.
Sci Rep ; 14(1): 16521, 2024 07 17.
Article en En | MEDLINE | ID: mdl-39019986
ABSTRACT
Ankle push-off power plays an important role in healthy walking, contributing to center-of-mass acceleration, swing leg dynamics, and accounting for 45% of total leg power. The majority of existing passive energy storage and return prostheses for people with below-knee (transtibial) amputation are stiffer than the biological ankle, particularly at slower walking speeds. Additionally, passive devices provide insufficient levels of energy return and push-off power, negatively impacting biomechanics of gait. Here, we present a clinical study evaluating the kinematics and kinetics of walking with a microprocessor-controlled, variable-stiffness ankle-foot prosthesis (945 g) compared to a standard low-mass passive prosthesis (Ottobock Taleo, 463 g) with 7 study participants having unilateral transtibial amputation. By modulating prosthesis stiffness under computer control across walking speeds, we demonstrate that there exists a stiffness that increases prosthetic-side energy return, peak power, and center-of-mass push-off work, and decreases contralateral limb peak ground reaction force compared to the standard passive prosthesis across all evaluated walking speeds. We demonstrate a significant increase in center-of-mass push-off work of 26.1%, 26.2%, 29.6% and 29.9% at 0.75 m/s, 1.0 m/s, 1.25 m/s, and 1.5 m/s, respectively, and a significant decrease in contralateral limb ground reaction force of 3.1%, 3.9%, and 3.2% at 1.0 m/s, 1.25 m/s, and 1.5 m/s, respectively. This study demonstrates the potential for a quasi-passive microprocessor-controlled variable-stiffness prosthesis to increase push-off power and energy return during gait at a range of walking speeds compared to a passive device of a fixed stiffness.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Diseño de Prótesis / Miembros Artificiales / Caminata Límite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Diseño de Prótesis / Miembros Artificiales / Caminata Límite: Adult / Female / Humans / Male / Middle aged Idioma: En Revista: Sci Rep Año: 2024 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido